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Abstract

We propose a novel similarity measure, called the correntropy coefficient, sensitive to higher order moments of the signal statistics based on a
similarity function called the cross-correntopy. Cross-correntropy nonlinearly maps the original time series into a high-dimensional reproducing
kernel Hilbert space (RKHS). The correntropy coefficient computes the cosine of the angle between the transformed vectors. Preliminary
experiments with simulated data and multichannel electroencephalogram (EEG) signals during behaviour studies elucidate the performance of the
new measure versus the well-established correlation coefficient.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantification of dynamic interdependence in multidimen-
sional complex systems with spatial extent provides a very use-
ful insight into their spatio-temporal organization. In practice,
the underlying system dynamics are not accessible directly.
Only the observed time series can help decide whether two time
series collected from the system are statistically independent or
not and further elucidate any hidden relationship between them.
Extracting such information becomes more difficult if the un-
derlying dynamic system is nonlinear or the couplings among
the subsystems are nonlinear and nonstationary.

There has been extensive research aimed at detecting
the underlying relationships in multidimensional dynamic
systems. The classical methodology employs a linear approach,
in particular, the cross-correlation and coherence analysis
(Shaw, 1981). Cross-correlation measures the linear correlation
between two signals in the time domain, while the coherence
function specifies the linear associations in the frequency
I An abbreviated version of some portions of this article appeared in
Xu, Bakardjian, Cichocki, and Principe (2007) as part of the IJCNN 2007
Conference Proceedings, published under IEE copyright.
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domain by the ratio of squares of cross-spectral densities
divided by the products of two autospectra. There have
been several extensions of correlation to more than two
pairs of time series such as directed coherence, directed
transfer functions and partial directed coherence (Pereda, Quian
Quiroga, & Bhattacharya, 2005). Unfortunately, linear methods
only capture linear relationships between the time series, and
might fail to detect nonlinear interdependencies between the
underlying dynamic subsystems.

Nonlinear measures include mutual information and state-
space methods. One technique is the generalized mutual
information function (Pompe, 1993). However, a large quantity
of noise-free stationary data is required to estimate these
measures based on information theory, which restricts their
applications in practice. Another method is the phase
synchronization where the instantaneous phase using Hilbert
transforms is computed and interdependence is specified in
terms of time-dependent phase locking (Rosenblum et al.,
1996). The state-space methodologies include similarity-
index and synchronization likelihood. The similarity-index
technique and its modifications compute the ratio of average
distances between index points, their nearest neighbours and
their mutual nearest ones (Arnhold, Grassberger, Lehnertz,
& Elger, 1999; Quian Quiroga, Arnhold, & Grassberger,
2000). Stam et al. proposed the synchronization likelihood to
offer a straightforward normalized estimate of the dynamic
coupling between interacting systems (Stam & van Dijk, 2002).
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There are several drawbacks associated with these techniques
based on state space embedding. Estimating the embedding
dimension of times series corrupted by measurement noise for
a valid reconstruction, searching a suitable neighbourhood size
and finding a constant number of nearest neighbours are a few
of many constraints that severely affect the estimation accuracy.

In this paper, we introduce a novel functional measure,
called the correntropy coefficient, to characterize dynamic
interdependencies between interacting systems. Correntropy is
a new concept to quantify similarity based on a reproducing
kernel Hilbert space method (Santamaria, Pokharel, & Principe,
2006). Correntropy is sensitive to both the higher order
statistical distribution information and temporal structure of
the random process. Correntropy can be applied both to one-
time series, called the autocorrentropy, or a pair of scalar
random processes, called the crosscorrentropy. In this paper,
we work with the centered crosscorrentropy, which implicitly
subtracts the mean of the nonlinearly transformed signal. The
correntropy coefficient is defined as the normalized centered
cross-correntropy. If two random variables or two time series
are independent, then the correntropy coefficient becomes zero;
if the two are the same, then it attains maximum value 1;
the correntropy coefficient achieves −1 when the two random
variables are in the opposite directions. Hence, the correntropy
coefficient is a suitable interdependence measure for interacting
dynamic systems.

The paper is organized as follows. In Section 2, we briefly
introduce the newly proposed correntropy concept and present
the method of the correntropy coefficient in details. We also ex-
plores the correntropy coefficient from geometrical perspective
and other relevant issues in Section 3. Experiments of the cor-
rentropy coefficient on simulated data and real EEG signals are
presented in Section 4. We conclude the work in Section 5.

2. Method

In function analysis, the symmetrical positive definite kernel
is a special type of bivariate function. The most widely used
kernel in machine learning and in nonlinear data representation
is the Gaussian kernel which is given by

κ(x, y) =
1

√
2πσ

exp

{
−
(x − y)2

2σ 2

}
, (1)

where σ is the kernel width. According to the Mercer’s
theorem (Mercer, 1909) of Hilbert space analysis, the
symmetrical positive definite kernel function possesses an
eigendecomposition as

κ(x, y) =

∞∑
n=0

λnϕn(x)ϕn(y) = 〈Φ(x),Φ(y)〉

Φ : x 7→

√
λnϕn(x), n = 1, 2, . . . ,

where {ϕn(x), n = 1, 2, . . .} and {λn, n = 1, 2, . . .} are se-
quences of eigenfunctions and corresponding eigenvalues of
κ(x, y) respectively, and 〈, 〉 denotes the inner product be-
tween two infinite dimensional vectors Φ(x) and Φ(y). By
the Moore–Aronszajn Theorem (Aronszajn, 1950), κ(x, y)
uniquely determines a high-dimensional reproducing kernel
Hilbert space, denoted as Hκ , where the nonlinear transforma-
tion Φ maps the original signals onto the surface of a sphere in
Hκ .

Based on the symmetrical positive definite kernel function
κ(x, y), the “generalized” cross-correlation function, called
cross-correntropy (Xu et al., 2007; Xu, Pokharel, Paiva, &
Principe, 2006), for two given random variables x and y is
defined as

V (x, y) = E[κ(x, y)] = E[〈Φ(x),Φ(y)〉],

where E denotes the statistical expectation operator. The
“generalized” cross-covariance function, called centred cross-
correntropy, is defined as

U (x, y) = E[κ(x, y)] − Ex Ey[κ(x, y)]

= E[〈Φ(x)− E[Φ(x)],Φ(y)− E[Φ(y)]〉]. (2)

Therefore the cross-correntropy function might be interpreted
as a “conventional” cross-correlation function for the trans-
formed random variables in the high-dimensional RKHS Hκ ,
while the centred cross-correntropy is nothing but the cross-
correntropy for the zero mean (centred) random variables
(Φ(x) − E[Φ(x)]). However, if we apply the Taylor series ex-
pansion for the Gaussian kernel in the definition of the cross-
correntropy, it can be easily noticed that it compactly contains
all even moments of the random variables (x − y) (Santamaria
et al., 2006). Hence, cross-correntropy includes higher order
statistical information about the random variables.

An important observation here is that when two random
variables x and y are independent, that is the joint
probability density function P(x, y) equals to the product
of marginal probability density functions P(x)P(y), then
E[κ(x, y)] = Ex Ey[κ(x, y)]. Therefore the centred cross-
correntropy reduces to zero only if the two random variables
are independent. This is a much stronger condition than
uncorrelatedness, as required by the conventional covariance
function in order to achieve zero value.

The centred cross-correntropy has similar properties to the
covariance function such as U (x, x) ≥ 0 and U (x, y) =

U (y, x). One of the most important properties is that the
centred cross-correntropy is symmetrical and nonnegative
definite.

Proposition 1. The centered cross-correntropy U (x, y) is a
symmetrical nonnegative definite function defined in X ×

X −→ R.

Proof. The symmetry of U (x, y) is easily seen since the kernel
function used in the definition is symmetrical. Given any
positive integer n, any set of x1, x2, . . . xn ∈ X and any not
all zero real numbers α1, α2, . . . , αn , by definition we have

n∑
i=1

n∑
j=1

αiα j U (xi , x j )

=

n∑
i=1

n∑
j=1

αiα j E
[
〈Φ(xi )− E[Φ(xi )],Φ(x j )− E[Φ(x j )]〉

]
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= E

∥∥∥∥∥ n∑
i=1

αi (Φ(xi )− E[Φ(xi )])

∥∥∥∥∥
2
 ≥ 0. (3)

Therefore, U (x, y) is symmetrical and nonnegative definite.
�

By normalizing the centred cross-correntropy, we can define
the “generalized” correlation coefficient, called the correntropy
coefficient, as

η =
U (x, y)

√
U (x, x)U (y, y)

, (4)

where U (x, x) and U (y, y) are the centred autocorrentropy
functions for variables x and y respectively. The absolute value
of the correntropy coefficient is bounded by 1. This property
can be proved by the following proposition:

Proposition 2. The centred cross-correntropy U (x, y) satisfies

|U (x, y)| ≤
√

U (x, x)U (y, y), (5)

hence the absolute value of the correntropy coefficient |η| ≤ 1.
Property (5) is called the Cauchy–Schwartz inequality in the
RKHS Hκ .

Proof. Let n = 2 in (3), the expression reduces to

α2
1U (x, x)+ α2

2U (y, y) ≥ 2α1α2|U (x, y)|. (6)

When both U (x, x) and U (y, y) are nonzero, we can substitute
α2

1 =
U (y,y)

2
√

U (x,x)U (y,y)
and α2

2 =
U (x,x)

2
√

U (x,x)U (y,y)
into (6) to obtain

(5). On the other hand, if at least one of the two autocorrentropy
functions is zero, we claim that the validity of (6) implies
U (x, y) = 0. Therefore (5) must hold because the left-hand
side is zero and the right-hand side is nonnegative. Hence we
conclude the proof. �

Unlike the conventional correlation coefficient, the corren-
tropy coefficient will produce a non-zero value (which depends
on the kernel width used in the Gaussian kernel) for two uncor-
related but not independent random variables. In the context of
generalized synchronization, the correntropy coefficient is able
to characterize both higher-order relationship and nonlinearity
between interacting systems.

In practice, we only have a finite number of data points or
time series samples available from the dynamic system. So we
have to work with the estimate of the correntropy coefficient.
Substituting the definition of the centred cross-correntropy
(2) into the correntropy coefficient (4) and approximating the
ensemble average by the sample mean, we can obtain an
estimate of correntropy coefficient directly from data,

η̂ =

1
N

N∑
i=1

κ(xi , yi )−
1

N 2

N∑
i, j=1

κ(xi , y j )√
κ(0)−

N∑
i, j=1

κ(xi ,x j )

N 2

√
κ(0)−

N∑
i, j=1

κ(yi ,y j )

N 2

, (7)

where N is the total number of samples, 1
N 2

∑N
i=1

∑N
j=1

κ(xi , y j ) is called the cross-information potential between x
and y, 1

N 2

∑N
i=1

∑N
j=1 κ(xi , x j ) and 1

N 2

∑N
i=1

∑N
j=1 κ(yi , y j )
are the information potential for x and y respectively (Principe,
Xu, & Fisher, 2000), and κ(0) is the value of Gaussian kernel
(1) when the argument (x − y) = 0.

3. Discussion

In this section, we explore more details about the
correntropy coefficient both in theoretical analysis and practical
implementation.

3.1. Geometrical interpretation

Since the centred cross-correntropy is symmetrical and
nonnegative definite, it also has a direct eigendecomposition by
the Mercer’s theorem,

U (x, y) =

∞∑
n=0

γnψn(x)ψn(y) = 〈Ψ(x),Ψ(y)〉

Ψ : x 7→
√
γnψn(x), n = 1, 2, . . . , (8)

where γn and ψn are eigenvalues and eigenfunctions for
the centred cross-correntropy respectively. According to the
Moore–Aronszajn Theorem, U (x, y) also uniquely induces a
high-dimensional reproducing kernel Hilbert space, denoted as
HU . Notice that the nonlinear map Ψ has implicitly embedded
the expectation operator so that every vector in HU becomes
deterministic and contains statistical information of signals,
hence it is data dependent. While in the RKHS Hκ induced
by the Gaussian kernel, each vector is still stochastic and the
RKHS is data independent. Thus, the nonlinear map Ψ provides
a natural link between stochastic and deterministic functional
analysis.

Substituting Eq. (8) into the definition of the correntropy
coefficient Eq. (4), we obtain

η =
〈Ψ(x),Ψ(y)〉

‖Ψ(x)‖‖Ψ(y)‖
= cos θ,

where ‖Ψ(x)‖ and ‖Ψ(y)‖ are the length of two vectors Ψ(x)
and Ψ(y) in HU respectively, and θ is the angle between
these two vectors. With this geometrical interpretation, the
correntropy coefficient essentially computes the cosine of the
angle between two nonlinear transformed vectors in RKHS
HU induced by the centred cross-correntropy. In particular,
if two vectors are orthogonal, then θ is 90◦ and η equals 0;
if two vectors are in the same direction, then θ is 0◦ and η
equals 1, while two vectors are in the opposite direction, θ
becomes 180◦ and η equals −1. Orthogonality between vectors
Ψ(x) and Ψ(y) in HU corresponds to independence between
random variables x and y. When two vectors are in the same or
opposite directions, this suggests a strong dependence between
two random variables x and y.

The RKHS approach to analyzing the conventional
correlation function was originally proposed by Parzen (1959)
because the correlation function is also nonnegative definite,
thus it determines a unique reproducing kernel Hilbert space,
denoted as HR . Grenander analyzed the standard correlation
coefficient from RKHS perspective in Grenander (1981). Both
HR and HU are data dependent reproducing kernel Hilbert
spaces, however HU implicitly embeds Hκ which incorporates
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higher order statistics intrinsic in the data. Therefore the
correntropy coefficient requires independence of two signals to
make two corresponding vectors in HU orthogonal, while the
standard correlation coefficient only needs uncorrelatedness.

3.2. Kernel width

The variance of the Gaussian kernel function is normally
called kernel width or kernel size. The kernel size should
be considered a scale parameter controlling the metric in the
projected space. From the geometrical perspective, the kernel
size decides the length of each of the nonlinearly transformed
vectors and the angle between them in the RKHS HU because

‖Ψ(x)‖ =

√
κ(0)−

1
N 2

∑N
i=1

∑N
j=1 κ(xi , x j ). It can be easily

seen that the vector length monotonically decreases as the
kernel width increases, while the centred crosscorrentropy
exhibits more complex pattern since it also depends on the
nature of the relationship between two random variables. The
kernel width controls the ability of the centred correntropy
to capture the nonlinear couplings intrinsic in the signals.
If the kernel width is too large, the correntropy coefficient
loses the ability to detect the nonlinearity and approaches the
conventional correlation coefficient; when the kernel width
is too small, the nonlinear transformations Φ(x) in (2) and
Ψ(x) in (8) cannot interpolate between data points. This can
also be verified by applying the Taylor series expansion to
the Gaussian kernel where the kernel width appears as the
weighting parameter in both second and higher- order moments.
The effect of the kernel size on different order moments
is scaled by the 2k power where k is the moment order.
When the kernel size is too large, the contribution of higher-
order statistics decays rapidly and the centred cross-correntropy
approaches the conventional cross-covariance function; on the
other hand, when the kernel size is too small, the effect of
higher order moments overweighs the second order one. An
appropriate kernel size should maintain the balance of second-
order and higher-order statistics of the signal, which is a
challenge and depends upon the application.

Therefore a good choice of the kernel parameter is crucial for
obtaining the good performance of the proposed method. There
are two ways of handling the selection of kernel size. One is to
seek an optimal kernel size. The cross-validation has been one
of the mostly used methods in machine learning field to choose
an appropriate kernel width. Other simpler approaches include
the Silverman’s rule of thumb which is given by (Silverman,
1986):

σ = 0.9AN−1/5, (9)

where A is the smaller value between standard deviation of
data samples and data interquartile range scaled by 1.34, and
N is the number of data samples. The Silverman’s rule is
easy to apply and frequently selects a good kernel size, hence
we will set the kernel width according to (9) throughout the
paper. Alternatively, the kernel size can be thought as a scale
parameter that provides different looks to the dependence
among the variables. Just like in wavelets, the kernel size is
able to analyze the dependencies at different resolutions. Since
many real-world signals are very complex, this multiresolution
analysis may elucidate better the relationships.

3.3. Scaling effect

Because the transformations Φ(x) in (2) and Ψ(x) in (8) are
nonlinear, any scaling of the original random variables results
in different performance of the correntropy coefficient. Unlike
the conventional correlation coefficient which is insensitive
to the amplitude scaling of the signals and only measures
the similarity of the signals through time, the correntropy
coefficient measures both the time and amplitude similarities
between two signals. Therefore, in certain applications, it is
vital to normalize both signals before applying the correntropy
coefficient. For example, the amplitudes of EEG signals are
highly dependent on the different electrode impedances. It is
critical to normalize all channels of EEG signals to the same
dynamic range.

4. Experiments

We test the correntropy coefficient on simulated data set and
real world EEG signals in this section.

4.1. Two unidirectionally coupled Hénon maps

First, we apply the correntropy coefficient in detecting
nonlinear interdependence of two unidirectionally coupled
Hénon maps X and Y defined as

X :

{
xn+1 = 1.4 − x2

n + bx un
un+1 = xn,

Y :

{
yn+1 = 1.4 − [Cxn + (1 − C)yn]yn + byvn
vn+1 = yn .

Notice that system X drives system Y with a nonlinear coupling
strength C . C ranges from 0 to 1 with 0 being no coupling
and 1 being complete coupling. Parameters bx and by are
both set to 0.3 as canonical values for the Hénonmap when
analysing identical systems, and to 0.3 and 0.1 respectively
for nonidentical ones. For each coupling strength, we discard
the first 10 000 iterated time series as transient and obtain
the next 500 data points for experiments. The correntropy
coefficient η is calculated between the first component of
system X, x1, and the first component of system Y, y1. The
following simulations address different aspects of a nonlinear
interdependence measure.

4.1.1. Variation of correntropy coefficient with coupling
strength

First in Fig. 1, we plot the averaged correntropy coefficient
η as a function of coupling strength C for identical and
nonidentical maps over 10 realizations of different initial
conditions. The error bars denote the standard deviation over
the different realizations. Fig. 1(a) shows the identical map
where the kernel size used in Gaussian kernel is set to be
0.001 according to the Silverman’s rule (9). The correntropy
coefficient η = 1 for C ≥ 0.7 in Fig. 1(a) indicating perfect
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Fig. 1. Averaged correntropy coefficient for unidirectionally coupled identical
(a) and nonidentical (b) Hénonmaps over 10 realizations of different initial
conditions.

Fig. 2. Time dependent of correntropy coefficient for unidirectionally coupled
identical (a) and nonidentical (b) Hénonmaps.

synchronization occurs between two coupled systems. The
critical threshold C = 0.7 corresponds to the point when the
maximum Lyapunov exponent of the response system becomes
negative and identical synchronization between the systems
takes place. On the other hand, the correntropy coefficient η =

0 for C < 0.7 suggesting no synchronization even though two
systems are weakly coupled. Similar results have been reported
using other nonlinear interdependence measurement in Quiroga
et al. (2000) and Schmitz (2000).

Fig. 1(b) shows the result for unidirectionally coupled
nonidentical systems. The kernel size is set to 0.4. In this
case, identical synchronization is not possible and the driver
has higher dimension than the response. The sharp increase
of the correntropy coefficient at point C = 0.7 as in the
identical synchronization situation can not be observed here.
But the correntropy coefficient shows a consistent monotonic
increase with respect to coupling strength except for the region
0.1 < C < 0.3. The local hump in the zone 0.1 < C < 0.3 is
due to the minima of the largest subLyapunov exponent (Schiff,
So, Chang, Burke, & Sauer, 1996).
4.1.2. Sensitivity of correntropy coefficient to time-dependent
dynamic changes in coupling

Next we test how sensitive the correntropy coefficient is to
time dependent sudden change in the dynamics of interacting
systems due to coupling strength. In experiment, dynamic
systems are coupled only during a single epoch and otherwise
uncoupled, which basically generates nonstationarity in time
series. We set the coupling strength C = 0 for n ≤ 10 150
and n ≥ 10 250 and C = 0.8 for 10 150 < n <

10 250. Only 400 data samples are plotted after the first 10 000
data are discarded as transient. The sliding window used to
compute the correntropy coefficient is chosen to contain 8 data
samples. Kernel size is set to 0.2 for identical map and 0.3 for
nonidentical map. The results are averaged over 20 independent
realizations of different initial conditions ranging from 0 to 1.
Fig. 2 plots the correntropy coefficient curves. In uncoupled
regions, η fluctuates around 0.01 for identical maps and 0.001
for nonidentical maps. A sharp and clear increase occurs at
t = 150 when the 0.8 coupling strength between systems X
and Y is introduced, and there is a sharp and clear decrease in
η falling off back to the baseline level when coupling strength
reduces to zero at t = 250. The interval where η is noticeably
higher than the baseline level matches nicely to the coupling
interval. This phenomenon is observed both in identical and
nonidentical Hénon maps. Therefore, although correntropy
assumes stationarity in the data generation, the correntropy
coefficient is potentially able to detect sudden change in the
coupling between two interacting dynamic systems with a high
temporal resolution, which makes this measure suitable for
nonstationary data sets.

4.1.3. Robustness of correntropy coefficient against measure-
ment noise

We analyze the robustness of correntropy coefficient when
the time series are contaminated with noise. Only measurement
noise is considered here which does not perturb the inherent
dynamics of systems. Independent realizations of white noise
are added to driver X, response Y and both systems separately.
The signal-to-noise (SNR) ratio is set to be 10 dB and 1dB
respectively to test the performance of correntropy coefficient at
different noise intensity. 500 data samples are used to calculated
the correntropy coefficient, averaged over 20 realizations. Fig. 3
plots the correntropy coefficient for identical Hénonmap with
white noise in response, driver and both systems. Kernel
size is chosen to be 0.04 for SNR = 10 dB and 0.08 for
SNR = 1 dB respectively according to the Silverman’s rule
(9). Note that the correntropy coefficient curves with noise
become less smooth than those of noise-free ones, but the sharp
increase at C = 0.7 is still obvious for both noise intensities.
When noise level is high (SNR = 1 dB), the correntropy
coefficient curve is more zigzag than that of 10 dB case,
however it can still detect increases in the coupling strength.
The figure also suggests that whether noise is added into the
driver system, response or both systems, the performance of
correntropy coefficient is very similar. Fig. 4 presents the results
for nonidentical Hénon map. Kernel size is selected to 0.05
for SNR = 10 dB and 0.2 for SNR = 1 dB respectively.
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Fig. 3. Influence of different noise levels on correntropy coefficient for unidirectionally coupled identical Hénonmap with white noise in response, driver and both
systems.

Fig. 4. Influence of different noise levels on correntropy coefficient for unidirectionally coupled nonidentical Hénonmap with white noise in response, driver and
both systems.
The values of the correntropy coefficients at different coupling
strength are averaged over 20 independent realizations. In
both levels of noise, the correntropy coefficients consistently
increase with respect to coupling strength. Also the effect of
noise in response, driver or both systems does not make big
differences. These results show that the correntropy coefficient
is fairly robust even in the case of considerably noisy data.
4.1.4. Effect of kernel width

We have discussed the importance of the kernel width in
the performance of the correntropy coefficient because it is a
parametric measure in previous section. Here we demonstrate
this on unidirectionally coupled identical and non-identical
Hénonmaps. Fig. 5 presents a three dimensional correntropy
coefficient curves of different kernel width and coupling
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Fig. 5. Effect of different kernel width on correntropy coefficient for
unidirectionally coupled identical Hénon- maps.

strength for the identical Hénon map. It clearly shows that
the kernel width provides a multiscale measurement for the
correntropy coefficient to quantify interdependence. When
the kernel width is chosen too large, σ = 0.5, 1, 10, in
this case, correntropy coefficient produces similar results to
those of linear correlation coefficient. On the other hand,
when the kernel width approaches to the one chosen by the
Silverman’s rule, σ = 0.001 here, correntropy coefficient is
able to characterize the nonlinear dependence between two
coupled Hénonmaps. Therefore, by varying the kernel width,
correntropy coefficient can measure both linear and nonlinear
dependence. The results for the nonidentical Hénonmap are
presented in Fig. 6. It can be seen that if kernel width
is too small, the increase of the correntropy coefficient
with respect to the coupling strength is not as obvious as
those of suitable kernel width (σ = 0.4 here). While the
kernel width is too large as per the Silverman’s rule, the
results of the correntropy coefficient approach to those of
conventional correlation coefficient. In both figures, we see that
the correntropy coefficients can either increase or decrease as
the kernel width increases. These observations are consistent
with our theoretical analysis in the previous section.

4.1.5. Ability of correntropy coefficient to quantify nonlinear
coupling

To demonstrate that correntropy coefficient η is able to
detect the nonlinear coupling, we use the multivariate surrogate
data technique which is introduced in Prichard and Theiler
(1994). Basically, in order to generate the multivariate surrogate
data, first the Fourier transform is applied to each time series,
then a common random number is added to each of the phases
and an inverse Fourier transform is applied. The resulting time
series have identical power spectra and cross-power spectra
as the original time series, but any nonlinear coupling among
the time series has been destroyed. In simulation, we use
TISEAN package (Schreiber & Schmitz, 2000) to generate 19
realizations of the surrogate data for the time series xn in the
driver system X and yn in the driver system Y for each different
coupling strength for the unidirectionally coupled nonidentical
Fig. 6. Effect of different kernel width on correntropy coefficient for
unidirectionally coupled nonidentical Hénon- maps.

Hénonmap. Then we compute the correntropy coefficient for
both the original and the surrogate data with respect to different
coupling strength. Fig. 7 plots the correntropy coefficient curve
for the original data and the mean value of 19 correntropy
coefficients for the surrogate data with the corresponding
maximal and minimal values as error bars. To quantify the
significance level, we calculate the Z -Score as Z =

|vorig−µsurr|

σsurr
where vorig is the correntropy coefficient value for the original
data, µsurr and σsurr are the mean and the standard deviation
for the surrogate data respectively. Table 1 presents the Z -
Score values for different coupling strength. With the exception
of C = 0.2 and 0.4, the Z -Score values are significantly
larger than 1.96 which means the nonlinear coupling has been
detected with a probability p < 0.05. These results clearly
demonstrates that the correntropy coefficient is sensitive to the
nonlinearity of the dependence between two coupled systems.

4.2. EEG signals

In the second experiment, we applied the correntropy
coefficient to real EEG signals. The electrical potentials on
the surface of the scalp of a human subject were measured
and recorded with the NeuroScan EEG system (NeuroScan
Inc., Compumedics, Abbotsford, Australia). A 64-channel cap
was used with electrode locations according to the extended
international 10/20 system and with a linked-earlobe reference.
Horizontal and vertical electrooculogram (HEOG and VEOG)
signals were also recorded for artifact rejection using two
sets of bipolar electrodes. The data sampling rate was fixed
at 1000 Hz and the online band-pass filter range was set to
be maximally wide between 0.05 Hz and 200 Hz. Subjects
were presented repeatedly (200 times) with unimodal auditory
and visual stimuli delivered in the central visual and auditory
spaces simultaneously and with the same strength to the
left/right eyes and ears, as well as with simultaneous cross-
modal combinations. For the purpose of this study, only the
unimodal data were used. The visual stimuli consisted of
5 × 5 black and white checkerboards presented for 10 ms,
while the auditory stimuli were 2000 Hz tones with durations
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Table 1
Z -Score for the surrogate data

Coupling Strength C 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z Score 6.9426 4.4721 1.6221 4.5845 0.7727 7.6581 9.9082 16.6999 12.2678 22.5882 19.8949
Fig. 7. Comparison of the correntropy coefficient for the original data and the
surrogate data for unidirectionally coupled nonidentical Hénonmap.

of 30 ms. The time interval between the stimuli in any of
the experimental conditions was random between 1500 and
2000 ms. Following standard eye-movement artifact rejection
procedures and segmentation into single epochs with alignment
at the onset of the stimuli, all artifact-free epochs were averaged
and normalized to zero mean and unit variance and low-pass
filtered at 0–40 Hz for further analysis. Since correntropy
coefficient is an amplitude-sensitive similarity measure, it
is critical to normalize signals from different channels into
the same dynamic range. We then applied the correntropy
coefficient to the averaged data to quantify the bilateral
synchronization or couplings among the corresponding sensory
areas of the brain. In order to test whether the correntropy
coefficient was able to detect any nonlinear couplings in the
EEG signals, the results were compared to the conventional
correlation coefficient. A window size of 20 ms data is used
to calculate both measures corresponding to the duration of
a single dipole activation in the cortex (Kotani et al., 2004).
The kernel width σ in Gaussian kernel (1) used in correntropy
coefficient was chosen to be 0.4 according to the Silverman’s
rule (9).

Fig. 8(a) and (b) show plots of the correlation and
correntropy coefficients for the auditory areas of the brain
as a function of time after the subject was exposed only
to the audio stimuli. Several bilaterally-symmetrical pairs of
electrodes were selected in the vicinity of the auditory cortex,
so that both measures were computed for pairs FC5–FC6,
FC3–FC4, C5–C6, C3–C4, CP5–CP6, CP3–CP4. As shown in
Fig. 8(a) and (b), there are two distinct time intervals 0–270 ms
and 270–450 ms in the auditory response. Both correlation and
correntropy coefficients drop at 270 ms. This suggests that both
measures are able to detect the changes in interhemispheric
Fig. 8. Comparison of the correlation coefficient and the correntropy
coefficient in characterization of synchronization among auditory cortex for
audio stimuli EEG signal.

synchronization of the auditory regions. However, as the
electrodes are chosen in different locations away from the
auditory cortex, it is expected that during the synchronization
phase (0–270 ms) the synchronization measures for different
pairs should be different. Fig. 8(a) shows that the correlation
coefficients for all 6 pairs are grouped together and are unable
to detect the difference in activation, while Fig. 8(b) suggests
that the correntropy coefficient can differentiate successfully
the synchronization strength among different areas of the
cortex above the left and right auditory regions. Notably, as
expected from previous studies, pairs FC5–FC6 and FC3–FC4
exhibit stronger synchronization strength than the others,
while most posterior pairs CP5–CP6 and C5–C6 have weaker
synchronization strength. Also the synchronization patterns
reveal lateral similarity in time for the pairs FC5–FC6 and
FC3–FC4, for CP5–CP6 and C5–C6, and for CP3–CP4 and
C3–C4. Furthermore the correntropy coefficients for pairs
C5–C6, C3–C4 and CP3–CP4 peak simultaneously at 90 ms
which corresponds to the first mean global field power (MGFP)
peak of the EEG signal. These differences indicate that the
correntropy coefficient is more sensitive and is able to extract
more information as a synchronization measure than the
conventional correlation coefficient.

We also compared both measures when applied to the visual
cortical areas. The measures are presented in Fig. 9 as a function
of time when the subject is exposed only to visual stimuli.
Again, a window size of 20 ms data is used to compute
both the correlation and the correntropy coefficients, and the
kernel width σ is again set to 0.4 as in the previous case. We
also chose bilaterally symmetrical pairs of electrodes O1–O2,
PO7–PO8, PO5–PO6, P7–P8, P5–P6 and P3–P4. In Fig. 9(b)
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Fig. 9. Comparison of correlation coefficient and correntropy coefficient in
characterization of synchronization among occipital cortex for visual stimulus
EEG signal.

the correntropy coefficients for all pairs except for O1–O2 show
similar synchronization patterns. The correntropy coefficient
increases at first, then reaches a peak around 275 ms, after
which it drops to lower levels. The maximum values of the
correntropy coefficients around 275 ms correspond to the peak
P1 in the visual evoked potential (Quian Quiroga, Arnhold, &
Grassberger, 2001). As expected the synchronization between
occipital channels O1 and O2 has the maximum strength
and stays high until it decreases around 350 ms. Thus the
correntropy coefficient shows that the extra-striate visual
networks become increasingly recruited and synchronized until
about 275 ms after the stimulus onset, while the primary visual
cortex is highly synchronous for a longer period of time, until
about 350 ms after onset. The channels pair P7 and P8 exhibits
the weakest synchronization strength since they are located
the farthest away from the primary visual cortex compared to
the other electrode pairs. On the other hand, the correlation
coefficients for most channel pairs display the same level of
synchronization until the sharp decrease at around 500 ms
(except for P7–P8). The synchronization between P7 and P8
has irregular patterns with a local minimum around 200 ms.
This comparison clearly demonstrates that also in this case
the correntropy coefficient measure outperforms the correlation
coefficient in the quantification of the EEG signal coupling
between the bilateral occipital regions of the brain in response
to visual stimuli.

5. Conclusions

In this paper, we propose the correntropy coefficient
as a novel nonlinear interdependence measure. Due to a
positive definite kernel function, the correntropy coefficient
implicitly maps the original random variables or time series
into an infinite dimensional reproducing kernel Hilbert space
which is uniquely induced by the centred cross-correntropy
function and essentially computes the cosine of the angle
between the two transformed vectors. Orthogonality in RKHS
HU corresponds to independence between original random
variables. Comparisons between the correntropy coefficient
and the conventional correlation coefficient on simulated two
unidirectionally coupled Hénon maps time series and EEG
signals collected from sensory tasks clearly illustrate that the
correntropy coefficient is able to extract more information than
the correlation coefficient in quantification of synchronization
between interacting dynamic systems. Correntropy is still easy
to evaluate directly from data and so it is simpler to apply than
other nonlinear techniques. However, correntropy introduces an
extra parameter for the analysis, which is the kernel size. The
kernel size affects the mapping to the nonlinear space and so
it needs to be properly selected for the application. In many
applications the simple Silverman’s rule sets the parameter
in a range that provides the desired result; however, more
sophisticated techniques as cross-validation may have to be
applied for more systematic results. This is a current research
topic in our laboratory (and generally in machine learning).
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