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ABSTRACT

The emergence of successful Brain-Computer Interfaces (BCI) that can assist the 

healthy and aid the disabled users, has introduced new limitless possibilities for wider use of 

brain technology in society. Yet, existing BCI designs are still unable to fulfill such high 

expectations due to restricted reliability, insufficient usability, and inadequate understanding 

of the underlying brain mechanisms.  

This work aimed to address directly the above problems by presenting and optimizing 

two new multi-command BCI designs based on Steady-State Visual Evoked Potential 

(SSVEP) brain responses. SSVEP brain activity is elicited in precise synchrony with 

observed flickering visual patterns. The main goal of the work in this thesis was to optimize 

in new ways the information transfer rates and the reliability of multi-command SSVEP-

based BCI systems. This was accomplished using two approaches: (1) Stimulus optimization 

to achieve maximal cortical response (frequency, size, movement, contents) for further use in 

BCI, and (2) Development of sensitive adaptive algorithms to extract weak target oscillations 

from ‘noisy’ EEG input signals immediately after SSVEP onset, based on the estimation of 

single-trial narrowband-energy changes (online) as well as on new phase-locking- and 

wavelet-energy variability measures (offline). 

To understand in detail the properties of the SSVEP stimuli for BCI, EEG 

experiments were performed with very small checkerboard patterns. Challenging small-sized 

SSVEP stimuli were introduced to allow more flexible BCI designs through taking up as little 

visual estate as possible, even at the cost of reduced SSVEP signal strength. The frequency-

response curve for these small SSVEP patterns was studied for 32 frequencies between 5 and 

84Hz. Understanding the SSVEP frequency characteristics for small checkerboards allowed 

the pinpoint definition of optimal parameters and limitations of the investigated 

checkerboard-based SSVEP-BCI paradigm, as well as better control of inter-subject 

variability. The SSVEP time dynamics for 8, 14 and 28Hz stimulation and three sensor 

locations (occipital, parieto-temporal and frontal) was investigated in a further series of 

experiments, aiming to establish the time-delay limitations of the SSVEP brain response as 

captured by the online BCI. The knowledge acquired from these neurophysiological 

experiments was utilized for the optimal design of an 8-command SSVEP-based BCI system. 

A novel dynamic feedback paradigm was created which featured a set of eight small 

checkerboard patterns assembled in a very tight but simultaneously moving 2-D spatial 

configuration, fixed around a main object, and controlled by the user’s intent. Due to this 
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design visual field occlusion was minimized, and long-term fatigue was reduced substantially 

by scaling down the demands on the visual system, and on the attention to the overall control 

task. BCI performance was measured and evaluated for three locations on the scalp (occipital, 

parieto-temporal and frontal), two of which included hairless areas for easy sensor 

application. In a further set of experiments, another type of SSVEP stimuli was investigated, 

flickering affective-face video sequences, in order to study the hypothesis that emotional-face 

content would be able to boost the SSVEP signals. Short happy and angry face videos were 

presented flickering at 5 different rates (5.6-12Hz) to eight experimental subjects, as well as 

three control stimuli - the blurred versions of the affective faces, and a reversing 

checkerboard. In an offline analysis of their basic properties, brain activity changes 

associated with SSVEP onset were evaluated using two measures - a new measure for phase 

locking value variability (PLVV) which was sensitive to inherent phase-reset changes in 

cortex at stimulation onset, and a more classical estimate of the wavelet energy variability. 

This approach using engaging SSVEP stimulus contents was further applied in a second 8-

command SSVEP-BCI design which employed the same band energy evaluation measures as 

before for comparison. Separate BCI sessions were performed using affective face videos, 

their blurred versions, and checkerboards as SSVEP stimuli, and the information transfer 

rates were measured for each experimental condition. The BCI system was designed allow 

self-paced control of a multi-joint robotic arm, especially suitable for disabled and elderly 

users. 

The results of the offline SSVEP signal analysis, normalized for all subjects, showed 

that the 5.6 – 15.3Hz small-pattern reversal stimulation evoked the strongest responses, 

peaking at ~12Hz, and exhibiting weaker local maxima at  5.6 Hz, 8 Hz (7.6-8.8 Hz), 12 Hz, 

15.3 Hz, and 28 Hz. The shortest SSVEP onset delays were observed starting at ~0.5s for the 

medium-frequency 14Hz reversal. The first SSVEP maxima, which are captured by online 

BCI algorithms, were measured offline at 1.5-2.5s after onset. Overall, the long-term SSVEP 

dynamics was highly non-stationary, especially in the high-frequency range. In the online 

BCI evaluation experiments, an information transfer rate of 50 bits/min was achieved at 

occipital sensor locations (mean success rate of 98 %, mean time delay 3.4s). The BCI 

performance deteriorated with increasing distance from the visual cortex (down to 74% for 

frontal sensor locations), as also inter-subject variability increased. Notably, in this BCI 

design, all flickering very small stimuli conformed strictly to international guidelines for 

prevention of photic- and pattern-induced seizures. Furthermore, novel affective-face video 

contents in the flicker stimulation evoked significantly stronger SSVEP responses than their 

corresponding emotionally-neutral blurred versions, as well as the checkerboards. No 

significant differences in the occipital SSVEP responses were detected due to emotional 

valence (happiness vs. anger), and there were also no significant differences between the 

SSVEP responses of individual subjects for all experimental conditions. The frequency 

response curve measured for affective-face SSVEP stimuli indicated that the SSVEP activity 
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was strongest for 10Hz flicker when averaged over all stimulus types. Although the PLVV 

measure was more sensitive than the wavelet energy, an adaptive combination of both phase-

lock and narrow-band energy measures would be recommended in future asynchronous 

SSVEP-BCI implementations for best results in terms of signal sensitivity, elimination of 

competing brain transients in the critical SSVEP frequency bands, and lower inter-subject 

variability. Online SSVEP-BCI evaluation of the effect of affective face video sequences for 

10 Hz flicker demonstrated that BCI delays were ~20 % shorter for affective-face stimuli 

than for blurred-face and neutral flicker (2.7s vs. 3.4s; success rate 99% vs. 98%). When 

using affective-face stimuli, a higher mean BCI information transfer rate (ITR) was achieved 

(64 bits/min vs. 50 bits/min for neutral stimuli). All subjects reported higher level of 

attention, interest and motivation for affective-face stimuli, which resulted in higher 

resistance to fatigue after long-term SSVEP exposure. 

Taken together, these findings point to new directions in BCI research by using 

unobtrusively small SSVEP stimuli, emotional-face video sequences, and new analysis 

methods to optimize substantially the SSVEP-BCI performance and enhance the user 

experience. Future BCI designs using a battery of SSVEP extraction algorithms, such as the 

time-resolved phase synchrony and energy variability measures demonstrated here, may lead 

to even more robust and reliable SSVEP brain response estimates in unsupervised clinical 

and home settings, as well as for other challenging brain-technology tasks in service of 

society. 
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Chapter 1: 

INTRODUCTION

This thesis is a multidisciplinary effort, bringing together neuroscience, information 

science and engineering. The work described here aims mainly to help find new ways to 

improve quality of life using robust and adaptive brain technology. Knowledge from three 

separate research areas was utilized – Brain-Computer Interfaces (BCI), Steady-State Visual 

Potentials (SSVEP). and affective neuroscience (emotions).  

“The most beautiful thing we can experience is the mysterious. It is the source of all 

true art and all science.” This quote from the German-born physicist Albert Einstein (1879 - 

1955) relates closely to my long-term fascination with unraveling the endless mysteries of the 

brain, the most complex organ in the human body, in service of society, and of my fellow 

human beings. 

1.1. The Ideal Brain-Computer Interface (BCI) 

Brain-Computer Interfaces (BCI) are useful tools created with the ultimate goal of 

assisting the disabled, and increasing the productivity of the healthy members of society by 

using brain technology in daily as well as professional tasks. A BCI in operation has the 

simple yet very challenging job to recognize reliably from the measured brain-activity the 

intent of the user as requested commands and to execute the predefined tasks associated with 

these commands.  
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As explained in detail in the overview Chapter 2, there are several types of BCI. The 

most important BCI taxonomy is based on the way the brain activity is generated or modified 

consciously by the user in order to enable identification. BCIs can be based, for example, on 

visual potentials, motor imagery, P300 potentials, slow cortical potentials, and various mental 

tasks. Another useful BCI classification distinguishes between invasive and non-invasive 

brain signal measurements.  

Regardless of the utilized paradigm and design, there are a number of basic desirable 

attributes (see also Table 2). An ‘ideal’ BCI system should include the following target 

features: 

1) Maximal information transfer rates (same or better than human natural capability) 

2) Maximal number of available independent BCI commands 

3) Minimal command delays 

4) Maximal operating reliability (³ 99%)

5) No user training necessary 

6) No system training necessary 

7) The inherent inter-subject / inter-session variability does not interfere with 

operations 

8) Minimal user effort: Minimal demands to all attentional / sensory systems of the 

brain (user is free to perform other tasks) 

9) Minimal mental fatigue after long-term operations 

10) Maximal resistance to distractions, passing emotions, and neurological disorders 

11) Friendly / attractive user interface 

12) BCI system is mobile (no bulky equipment) 

13) Emergency OFF switch is available and maximally reliable 

14) Minimal preparation time ; no need for electro-gel (e.g. dry/remote electrodes) 
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15) Minimal operating costs. 

1.2. Existing BCI Problems: Why is the Ideal BCI Difficult 

to Achieve? 

In spite of the maturing stage of development in the Brain-Computer Interfaces 

research field, even the most sophisticated existing BCI designs still suffer from substantial 

problems. Almost none of the ‘ideal’ target features listed in Chapter 1.1 have been achieved 

completely and in a consistent way. Regardless of the paradigm type and implementation, 

non-invasive BCI systems (in general) are still short of the desired characteristics due to 

several important factors: 

1) Imperfect signal feature extraction and classification results in restricted reliability 

of the BCI commands, especially for more than 2 commands 

2) Low brain signal-to-noise ratios in single trials result in long time delays between 

user intent onset and BCI command recognition 

3) Inadequate understanding of the underlying brain mechanisms resulting in 

undesirable high inter-subject signal variability and low number of BCI 

commands 

4) Inherent low-sensitivity shortcomings of the electroencephalographic mode of 

recording  

5) User training and system classifier training necessary (depending on paradigm) 

which results in long delays before an optimal performance can be achieved 

6) Substantial attentional demands in order to evoke stronger brain activity: Users 

need to concentrate 100% on operating the BCI system, leaving them no room for 
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other useful tasks. Continuous attention results in fatigue after a few hours of 

operation. Minimal resistance to distractions 

7) Application of EEG (electroencephalographic) electrodes needs specialized 

knowledge and time, as in most cases (currently) electro-gel is used, which dry up 

after several hours of operation. Hair needs to be washed of the electro-gel after 

the end of operations. 

8) Equipment is bulky and expensive, usability is very limited. 

1.3. Existing BCI Problems: Using SSVEP-BCI 

The experimental designs and results presented in this thesis are based on the 

conscious control of the brain responses to rapidly changing visual stimuli. Steady-State 

Visual Evoked Potential (SSVEP) brain activity is elicited in precise synchrony with 

observed flickering visual patterns (see a review in Chapter 2.2). If two or more patterns 

oscillate at different frequencies on a computer screen, a user can choose which one to attend 

so that a corresponding BCI command is recognized. The SSVEP-BCI approach has been 

recognized as having a number of advantages and able to overcome many of the drawbacks 

of other BCI paradigms (see a review in Chapter 2.3). In spite of that promising assessment, 

however, the existing SSVEP-BCI systems haven’t been able to realize their full potential 

mainly due to inherent difficulties with low SSVEP signal-to-noise ratios in the single trial 

measurements typical for BCI (as measured using EEG). This has prevented a much needed 

increase in the number of BCI commands, decrease in the size of SSVEP stimuli, and 

recording from suboptimal but more convenient non-occipital brain areas.  

Prior to this work, existing SSVEP-BCI systems based on computer-generated stimuli 

(see Table 1) used mostly 2-4 large reversing checkerboard patterns in order to evoke 
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sufficiently strong, measurable SSVEP responses (Lalor et al., 2004; Trejo et al., 2006; 

Oehler et al., 2008). These checkerboard stimuli covered up most of the useful visual area on 

the screen, substantially limiting the possible BCI applications and increasing user fatigue. In 

addition, the SSVEP frequencies in these studies were pre-selected in a relatively arbitrary 

way. The resulting BCI command delays were not studied systematically in order to 

understand the underlying signal dynamics, and to increase substantially the information 

transfer rates.  

To summarize, the most important problems in SSVEP-based BCI systems prior to 

this work were: 

1) Usage of too large on-screen SSVEP stimuli to evoke stronger brain responses, 

which obscure useful visual space (visual stimuli need to be very small) 

2) Fixed usage of uniform white or large checkerboard SSVEP stimuli (other types 

of visual stimuli may be more appropriate) 

3) Fixed flicker frequencies (optimal frequencies need to be determined for each type 

of SSVEP stimuli) 

4) Stimuli are located far away from each other (e.g. on the edges of the screen) 

prompting larger eye movements (increased BCI delays, fatigues, artifacts) 

5) Small number of SSVEP-BCI commands 

6) FFT-based signal processing with subjective parametrization of the weights of the 

harmonic frequencies for each flicker 

7) No insight into the mechanisms of SSVEP and BCI delays, which prevents 

optimization 

8) Fixed data acquisition from occipital sensor locations only (no insight for BCI 

performance at other brain sites). 
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Table 1. Comparison of SSVEP-BCI approaches in this thesis and previous research 

THIS THESIS PREVIOUS Research

SSVEP stimulus size (screen-

based)

very small moving 

checkerboards

large stationary 

checkerboards, large 

white squares or stripes

Study of SSVEP properties? YES

a) Frequency response

curve

b) SSVEP time dynamics

c) Emotional-face contents

NO

Sensor locations a) Frontal 

b) Parieto-temporal

c) Occipital

Occipital

SSVEP stimulus movement 

for spatial navigation ?

YES NO

Number of SSVEP-BCI 

Commands (screen-based 

SSVEP stimuli)

8 - 12 2 - 4

Clustered SSVEP Stimuli 

(SSVEP-BCI Commands)

for minimal eye movements

YES NO

SSVEP-BCI ITR 64 bits / min 7 - 43 bits / min
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1.4. Research Objectives Addressed in This Thesis 

The work presented in this thesis aimed to address directly the existing problems 

described above. New approaches were necessary to remove a number of essential obstacles 

to the creation of practical unsupervised BCI paradigms able to work outside of the 

laboratory. As a result, the following research goals were pursued in this work: 

1) Using very small visual patterns to minimize visual occlusion while 

evoking measurable SSVEP responses at different frequencies (freeing 

up essential screen space for application purposes) (Chapter 3, 4) 

2) Using SSVEP patterns in close proximity to each other without brain 

response interference (Chapter 4) 

3) Using a high number of commands without brain response 

interference (Chapter 4) 

4) Optimal selection of SSVEP stimulation frequencies based on 

objectively measured EEG data (frequency response curve) (Chapter 

3) 

5) Understanding the time dynamics of the SSVEP response to small 

stimuli as used for BCI (time delay limitations of BCI commands) 

(Chapter 3) 

6) Measuring reliable SSVEP responses from fast moving 

flickering/reversing visual patterns, in a novel dynamic paradigm for 

pattern SSVEP BCI (control of a moving object) (Chapter 4) 

7) Achieving the highest possible BCI information transfer rates and 

robustness for the proposed paradigms (Chapter 4) 
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8) Using sub-optimal temporal or pre-frontal sensor locations on the head 

for new SSVEP-BCI designs with dry electrodes (without the need for 

application of EEG gel) (Chapter 3, 4) 

9) Effect of using emotional-face SSVEP stimuli instead of checkerboards 

in BCI applications (Chapter 5, 6). 

These research objectives were pursued using two general directions: 

1) Stimulus optimization to achieve maximal cortical response for further use 

in BCI (frequency, size, movement, and contents of SSVEP stimuli) 

2) Development of sensitive adaptive algorithms to extract weak target 

SSVEP oscillations from ‘noisy’ EEG input signals, both offline for 

detailed analysis, and online for SSVEP-BCI evaluation. 

Table 1 presents a concise comparison between the new approaches presented here 

and previous research. 

In addition, the Brain-Computer Interface design and implementation described in this 

thesis aimed to comply fully to the 4 basic criteria for a BCI (Pfurtscheller et al., 2010b): 

1) The BCI device must use directly brain signals 

2) The BCI device must be capable of real-time signal processing 

3) The BCI device must allow the user to modulate intentionally at least one 

brain signal feature through goal-directed behavior 

4) The BCI device must give the user feedback information. 

Overall, the research goals described above were the focus of an effort to use new 

knowledge in order to design, optimize experimentally and evaluate the performance of a 

novel eight-command SSVEP-based BCI system as described in the following chapters. 
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1.5. Summary of Achievements in this Thesis 

The work in this thesis aimed mainly at the substantial optimization of cortical visual 

responses and signal processing algorithms, as well as achieving superior multi-command 

SSVEP-BCI information transfer rates and reliability. The following major conclusions were 

reached: 

1) Very small checkerboard SSVEP stimuli were shown to elicit measurable and 

reliable single-trial brain responses 

2) The SSVEP frequency response curve (5.1 Hz - 84 Hz) for small stimuli was 

studied, and the optimal SSVEP brain response range was determined to be 5.6 Hz 

– 15.3 Hz (12 Hz maximum) 

3) The onset of single-trial SSVEP responses was shown to be detectable between 

1.5 s and 2.5 s (using band oscillation envelope measures) 

4) SSVEP dynamics (onset delays, first peaks, stationarity) were strongly dependent 

on the stimulation frequency. When 3 stimulation frequencies were compared (8, 

14 and 28 Hz), the 14 Hz responses exhibited fastest onsets and maximal signal 

stability 

5) The feasibility of practical SSVEP-BCI designs using dry electrodes (without 

electro-gel) was established by evaluating SSVEP responses from 3 distinct sensor 

locations (occipital, parieto-temporal and frontal). While occipital visual 

responses were optimal as expected, the parieto-temporal and frontal locations 

also allowed the detection of SSVEP responses, although with reduced strength, 

stationarity and reproducibility 
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6) A new SSVEP-BCI system with 8 independent commands, using small 

checkerboard stimuli flickering in the optimal range, reached a mean information 

transfer rate (ITR) of 50 bits/min, with success rate of 98% and command delay of 

3.4 ± 0.7 s for occipital sensor locations 

7) SSVEP-BCI performance was evaluated also for parieto-temporal and frontal 

sensor locations, and deteriorated with increasing distance from the visual cortex 

(81% success rate and 4s delay for parieto-temporal sensor locations and 74% 

success rate and 4.3s delay for frontal electrodes) 

8) No user training was necessary for this SSVEP-BCI system 

9) Very close proximity (clustering) of multiple small SSVEP stimuli was used 

successfully for the first time in the SSVEP-BCI design 

10) A moving block of multiple small SSVEP stimuli was used successfully for the 

first time in the SSVEP-BCI design (a novel dynamic feedback paradigm) 

11) Due to the small size and close clustering of the checkerboard stimuli in the 

SSVEP-BCI design the visual field occlusion was substantially minimized, and 

long-term user fatigue was reduced 

12) Flickering emotional face video sequences were shown to elicit superior SSVEP 

responses than checkerboard- and blurred stimuli 

13) The Affective-face SSVEP frequency response curve (5 Hz - 12 Hz) was studied, 

and the optimal brain response for this type of SSVEP stimuli was 10 Hz

14) A new single-trial phase-locking value variability (PLVV) measure was used in 

the offline SSVEP analysis, and was shown to be more sensitive to SSVEP onset 

than a comparable band-energy based measure – wavelet-transformed energy 

variability (WTV) 
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15) A new Affective-face SSVEP-BCI design was evaluated for 10 Hz flicker and was 

shown to be superior to the small-checkerboard design (mean BCI delay 2.7s vs. 

3.4s; mean success rate 99% vs. 98%; mean ITR 64 bits/min vs. 50 bits/min). 

16) BCI users reported substantially higher motivation, attention, and less long-term 

fatigue when using the Affective-face SSVEP-BCI design as compared to neutral 

checkerboard- and blurred-face SSVEP-BCI stimuli 

17) The higher reliability and stronger brain responses allowed users of the Affective-

face SSVEP-BCI system to control successfully a multi-joint robotic arm with 

complex movements with minimal online errors. A multi-command BCI system 

controlling reliably a robotic arm has substantial advantages for disabled members 

of society. 

1.6. Organization of the Thesis 

This thesis (Fig. 1) focuses on an integrated approach to the optimization of SSVEP-

based Brain-Computer Interfaces (Fig. 2). This was accomplished, first, by investigating the 

brain responses to continuous visual flicker stimulation with very small checkerboards 

(Chapter 3), as well as with flickering emotional face videos (Chapter 5). Second, the results 

were applied for designing two optimized SSVEP-BCI paradigms using the same stimuli 

(Chapter 4 and Chapter 6). In this work, several novel concepts were introduced and explored 

in order to enable new types of efficient and user-friendly Brain-Computer Interfaces. 
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Fig. 1. Diagram of the organization of this thesis 
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Chapter 2: 

OVERVIEW OF PREVIOUS RESEARCH

2.1. Brain-Computer Interfaces (BCIs) 

2.1.1. Why are Brain-Computer Interfaces necessary? 

Today's advances in technology and signal processing algorithms are giving brain 

researchers a new edge, allowing us to go one crucial step further, from understanding brain 

functions, to actually using this knowledge to change the world. Brainwave-based 

technologies such as Brain-Computer Interfaces (BCI), when made sufficiently user-friendly, 

reliable, and affordable, will help mankind not only to conquer crippling disabilities through 

neuroprosthetics and rehabilitation, but also to improve precision of control for vehicles and 

robots in hostile environments such as space, to let people live in intelligent e-homes, to 

integrate new electronic body enhancements whenever necessary, and to play and 

communicate in novel ways.  

2.1.2. Brain-Computer Interfaces – Definition, Application and Requirements 

A Brain-Computer Interface (BCI) is any brain-to-machine communication system, 

which is able to interpret and execute voluntary brain commands, with no dependence on the 

normal executive pathways of the body such as muscles and peripheral nerves (Wolpaw et 

al., 2000).  
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Fig.2. Basic block diagram of a Brain-Computer Interface (BCI) system (Bakardjian, 2004) 

BCI technology has the potential to find wide acceptance in society. Possible practical 

applications of BCI are: 

1) Mobility assistance for the elderly and disabled; recreation (brain control of 

wheelchairs, robots and vehicles for self-reliance and self-service) 

2) Remote control of devices (hazardous environments - space, fire; telerobotics) 

3) Communications, creative work (email, documents) 

4) Virtual reality creations (multi-player games, role play, navigation) 

5) Neuroprosthesis and rehabilitation (replace or restore function of limbs) 

6) Remote monitor of attention in pilots or drivers (Vaughan et al., 2003) 

7) Brain-based art creation (Vaughan et al., 2003) 

8) Neural enhancements control in a healthy human body such as additional artificial 

limbs, memory chip implants (there may be ethical issues) 
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BCI is a particularly challenging task from the point of view of biosignal processing, 

because often single-trial analysis use dense electrode arrays to compensate for low signal-to-

noise ratios due to the unavailability of inter-trial statistics. In addition to the single trials, 

online BCI systems need to overcome a further limitation in spatial resolution, with only a 

few electrodes available in order to make such devices easier to handle. From the point of 

view of the necessary requirements, an optimal BCI system should exhibit the following 

characteristics:  

1) Maximal number of commands (maximal choice / degrees of freedom) 

2) Maximal accuracy of command recognition (high noise and artifact resistance) 

3) Maximal speed of command transfer (stimulus rate, information content) 

4) Maximal comfort for users (sensors, environment, ease of control = low mental 

load) 

5) Maximal tolerance to fatigue and shifting emotional states 

6) Maximal tolerance to distractions (external stimuli, passing thoughts, memories) 

7) Maximal tolerance to neurological disorders 

8) Maximal tolerance to inter-subject variability 

9) Minimal training (both for user and machine) 

10) Minimal cost of operation 

11) Maximal robustness: ON/OFF/IDLE commands; recycle or cancel commands 

12) Maximally attractive user interface (for enhanced motivation). 

2.1.3. BCI Approaches and Types 

In 1967, Edmond Dewan (Dewan, 1967) described what seems to be one of the first 

accounts of a BCI communication. In his experiments, subjects controlled voluntarily the 
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amplitude of their own alpha EEG waves which allowed a computer program to convert these 

changes and send corresponding Morse code messages. In 1973, Jacques Vidal, a computer 

science researcher at UCLA, described the working principles of a direct brain-computer 

interface (BCI) (Vidal, 1973) and four years later, he published the results of a successful 

online BCI implementation with 4 commands (Vidal, 1977). Vidal used visual evoked 

potentials (VEP) elicited by brief illumination of a checkerboard to estimate with over 90% 

success rate which one of the four preset gaze positions around the pattern was attended, in 

order to control a moving object in a maze. The data processing approach in his study was 

already built around the current online BCI architecture, including data acquisition, artifact 

rejection, preprocessing, feature selection, and classification modules. 

The fundamental goal of BCI is to identify each user intention from its corresponding 

brain pattern in near-real-time. However, current recording techniques are unable to deliver 

unique patterns for each user intention for usage as unlimited commands. In practice, using a 

limited number of sensors results in overlapping of the measurable characteristics of the 

available brain patterns, which need to be controlled / separated using specific tasks for the 

user to perform during the BCI session.  

The prevalent recording technique for BCI is electroencephalography (EEG). Current 

brain signal processing approaches distinguish between ‘spontaneous’ and ‘evoked’ EEG. 

Spontaneous EEG refers to the measurement of continuous brain waves, including the delta 

(up to 4Hz), theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz), and gamma (30-100+Hz) waves, 

while evoked EEG represents brain potentials with limited duration which are recorded in 

response to specific stimuli, such as visual, auditory, somatosensory, or olfactory. BCI 

paradigms can be based on both spontaneous and evoked brain signals, for example, motor-

imagery BCI using modulation of spontaneous ‘mu’ and ‘beta’ waves, or SSVEP-BCI 

(steady-state visual evoked potentials) using periodically evoked visual responses. 
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Currently, BCI tasks can be classified into two main categories: 

1) Internally-supported – Voluntary generation of specific mental state patterns 

(usually based on modification of spontaneous brain activity) 

The mental state BCI paradigms could be either cue-, or internally-paced, and are 

usually based on conscious control of naturally-occurring brain waves, such as mu-, beta- and 

alpha, slow potentials, or multi-unit neuronal activity.  

There are two subtypes of mental load BCI tasks, both of which use response 

modification by feedback (Curran and Stokes, 2003): 

1.1) Cognitive load (using specifically-defined imagination tasks like limb 

movement, grasping, mental arithmetic) (Pfurtscheller et al., 2006; 

Penny et al., 2000) 

1.2) ‘Operant conditioning’ (no specific cognitive targets, “just do it” 

principle) (Wolpaw et al., 2000; Bensafi et al., 2003) 

2) Externally-supported – Voluntary modification of the normal responses to external 

stimulation (usually based on modification of evoked brain activity) 

2.1) Using selective attention to choose a target stimulus corresponding 

to a BCI command which evokes a specific recognizable brain response 

(Bakardjian et al., 2010; Gao et al., 2003; Farwell and Donchin, 1988).

Examples for such attention-driven BCI tasks are:

2.1.1) Cognitive load (using specifically-defined imagination 

tasks like limb movement, grasping, mental arithmetic) 

(Pfurtscheller et al., 2006; Penny et al., 2000) 

2.1.2) P300 oddball response (Farwell and Donchin, 1988) 

2.1.3) SSVEP (steady-state visual evoked potentials) (Sutter, 

1984; Gao et al., 2003; Müller-Putz et al., 2005) 
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2.1.4) SSSEP (steady-state somatosensory evoked potentials) 

(Müller-Putz et al., 2006) 

2.2) Using voluntary modification to external stimulus responses in order to 

indicate a BCI command. An example is a 2-command BCI task based on self-

controlled visual priming in which the subjects imagined (or not) observing 

smooth natural visual motion while actually viewing discrete apparent motion 

(‘jumping’) bar stimuli (Bakardjian, 2003). 

Internally-supported mental-state tasks have the advantage that they do not usually 

require external stimulation equipment (except for the feedback of the results to the user). 

However, the complexity of the involved natural brain processes can be very high so that the 

reliability and number of commands is currently limited in mental-state paradigms. In order 

to create Brain-Computer Interfaces with enhanced information transfer rates for both the 

internally- and externally-supported BCI task paradigms, strict controls are imposed by using 

well-known cognitive imagery processes (such as motor imagery), and strong phase-locked 

sensory responses which are reliably detectable in single trials (such as SSVEP).  
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Table 2. BCI experimental approaches – Advantages and problems 

Attribute
Externally-Driven

(stimulated responses)

Internally-Driven
(mental states)

Large Number of Commands YES NO

High Reliability of Commands YES
NO

(in most cases)

High Information Transfer Rates YES NO

Short User Tuning (before 1
st

usage) YES NO

Short Training YES NO

Self-Paced YES / NO YES / NO

Short Command Delays (±1sec) NO / YES YES / NO

ON/OFF Switch YES
YES

(in most cases)

No Stimulation Equipment Necessary NO YES

No Sensory Engagement Necessary NO YES

Resistant to High Subject Variability YES NO

Resistant to Mental Fatigue NO NO

Resistant to Passing Emotions
YES

(in most cases)

NO

(in most cases)

Resistant to Distraction
NO

(in most cases)
NO

Resistant to Neurological Disorders
YES

(in most cases)
Unknown

Attractive User/Neurofeedback Interface
YES

(possible)

YES

(possible)

Comfortable for User
NO

(in most cases)
YES

EXAMPLES

for BCI Approaches

SSVEP (steady-state) (Sutter 

1992; MacMillan 2000; Gao 

2002)

P300 oddball response 

(Donchin 2000)

SCP (slow cortical potentials) 

(Kübler 2001)

Visual motion response 

(Bakardjian 2003)

Motor imagery (Pfurtscheller 

1994)

Mental states (Millán 2003)

Cognitive load (specific 

imagination tasks):  

(Pfurtscheller 2004; Penny 

2000)

Operant conditioning’ (“just do 

it”): (Humphrey 

1970;Birbaumer 1999; Wolpaw 

2000; Nicolelis 2004)
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Apart from the BCI task dichotomy, another BCI classification is possible from the 

point of view of brain data acquisition, as there are two principal approaches (Vaughan et al., 

2003): 

1) invasive recording of individual or local neuronal activities (surgery necessary) 

2) non-invasive measurement reflecting only large-scale neuronal activations (EEG, 

NIRS, time-resolved fMRI).  

2.1.4. Invasive BCI 

Neuronal spikes due to action potentials are measured using arrays of miniature 

electrodes implanted in the brain tissue. From 1996, Kennedy’s group at Neural Signals Inc 

started implanting “locked-in” paralyzed human users with their special cone electrodes with 

hollow tips for growth of the neural tissue (Kennedy et al., 1998). One of their first subjects 

equipped with invasive BCI technology, was able to control a cursor on a computer screen 

and spell about three letters per minute (Kennedy et al., 2000).  

Further invasive BCI studies have demonstrated increasingly complex usage of direct 

neuronal activity information, such as remote control of a TV set or a computer cursor by 

Donoghue’s BrainGate device (Donoghue, 2002), or the operation of a robotic gripper arm 

controlled entirely by brain signals optimized by visual feedback (Taylor et al., 2002; 

Carmena et al., 2003; Chapin et al, 1999). In a less invasive procedure, local field potentials 

reflecting the activity of groups of neurons can be recorded from subdural or epidural 

locations under the scull to control, for example, a computer cursor (Schalk et al., 2008). 
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Table 3. Summary of Invasive BCI studies reviewed in this chapter 

Invasive BCI Principle Studies

Implanted Microelectrode Arrays

(incl. the commercial BrainGate 

system)

Donoghue, 2002; Carmena et al., 2003; 

Chapin et al., 1999; Taylor et al., 2002

Implanted Neurotrophic Electrodes Kennedy et al., 1998-2004; Guenther et al., 

2009

Electrocorticographic (ECOG)

Electrode Arrays

Schalk et al., 2008

2.1.5. Non-Invasive BCI 

Success in non-invasive BCI has been also impressive in recent years, although 

arguably less spectacular due to the substantial challenges posed by the recording of large-

scale synchronized activity often originating from multiple neuronal populations behind the 

layers of the cerebrospinal fluid, meninges, skull bone and scalp skin. The non-invasive 

approach offers promise for a wide range of immediate real-life applications, both for healthy 

and disabled users. 
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Table 4. Summary of Non-Invasive BCI studies reviewed in this chapter 

(see Table 6 for further SSVEP-BCI examples) 

Non-invasive BCI Principle

(in alphabetical order)

Studies

Alpha-waves (1
st

BCI study) Dewan, 1967

Hybrid SSVEP-SMR-BCI (feasibility) Pfurtscheller et al., 2010a,b

Mental tasks Keirn and Aunon, 1990; Millan et 

al., 2004; Penny et al., 2000; Galan

et al., 2008

P300 (oddball paradigm) Farwell and Donchin, 1988;

Donchin et al., 2000

SCP (Slow Potentials) Birbaumer et al., 1993,2003

SMR rhythms (motor imagery) Pfurtscheller et al., 1993-2010;

Obermeier et al., 2001; Hashimoto

et al., 2008

SSSEP (Steady-State Somatosensory EP) Müller-Putz et al., 2006

SSVEP (Steady-State Visual EP) Gao et al., 2003; Müller-Putz et al., 

2005

VEP Vidal, 1977

Visual motion imagery Bakardjian et al., 2003

2.1.5.1. Motor-imagery based BCI 

Most of the BCI researchers to date use motor imagery tasks, which allow detection 

of changes in the brain’s sensorimotor rhythm (SMR) in preparation for motor tasks (muscle 

movements). Motor-imagery BCIs use ‘cognitive load’ self-regulation type tasks (as 

described above), transmitting predictable commands due to the ease of detection and speed 
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of the SNR changes, even though the number of commands and BCI reliability may be 

relatively limited. Pfurtscheller’s group (Graz-BCI) was among the first research labs to 

actively develop and explore this BCI mode (Pfurtscheller et al., 1993). The introduction of 

the concepts of Event-related Desynchronization (ERD) and Event-related Synchronization 

(ERS) revealing non-phase-locked events in the frequency domain (Pfurtscheller et al., 2003) 

helped advance this paradigm to a point where a five-class BCI was reported (Obermeier et 

al., 2001).  

Using this approach, Pfurtscheller’s group was also able to demonstrate the successful 

artificial stimulation of the hand grasp function in a tetraplegic patient with direct brain 

control (Pfurtscheller et al., 2003). Beta- and mu-wave activity from surface EEG data was 

recorded and classified in real time while the tetraplegic subject imagined foot movement, 

after which the output signal directed a functional electrical stimulation (FES) device to help 

the paralyzed hand grasp a cylinder. 

Recently, a team of researchers at Keio University demonstrated that within the 3-D

virtual reality web environment Second Life a disabled person was able to communicate from 

his home with a student logged in 16 km away and to walk his avatar to him by using only his 

brain waves (Hashimoto et al., 2008). The system used 3 electrodes to identify hand and foot 

imagery and to show the feasibility of virtual contacts for disabled people. 

2.1.5.2. Slow cortical potentials based BCI 

Slow cortical potentials (SCP) for BCI control were pioneered by the Birbaumer 

group at Tübingen (Birbaumer et al., 1999; Birbaumer et al., 2003). They used SCP as an 

‘operant conditioning’ type of BCI, and called it a Though-Translation Device (TTD). In 

their initial implementation, the users controlled a spelling device which two ALS patients 
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learned to use at a rate of two characters per minute (after two months of training). In another 

setup, subjects tried to move a ball on the screen toward a target. Both healthy users and 

‘locked-in’ patients were able to gain control of the system through their own strategies, 

including imagery. 

2.1.5.3. P300 potentials based BCI 

Donchin and Farwell were among the first researchers to design a BCI device based 

on the detection of the well-known P300 ‘target’/’surprise’ brain wave (Farwell and Donchin, 

1988; Donchin et al., 2000). In their design, a grid containing the letters of the alphabet and 

some other functions flashed randomly each character, while the user concentrated on the 

desired letter. When the target was flashed, a P300 wave indicated a selection. This principle 

allows high reliability, however, often it is necessary to use multiple trials to achieve 

selection, and the increased attention efforts may (arguably) cause fatigue faster than in some 

other BCI paradigms. 

2.1.5.4. Non-motor cognitive tasks (mental tasks) based BCI 

Keirn and Aunon (Keirn and Aunon, 1990) demonstrated that it is possible to 

distinguish between five specific mental tasks using the delta (0-3 Hz), theta (4-7 Hz), alpha 

(8-13 Hz), and beta (14-20 Hz) frequency bands, and a Bayes quadratic classifier. 

Even though for this type of BCI a large number of commands is theoretically 

possible, it is still very challenging due to the high rate of command misclassifications. 

Recently, the most commonly used features are mental rotation or mental arithmetic. A study 

by Penny (Penny et al., 2000) utilized a pattern classifier with parameter uncertainty while 
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the user’s mental arithmetic task was to subtract sevens successively from a three digit 

number.  

In recognition that a more flexible approach is necessary, later studies used a mixed 

paradigm in which both motor imagery and another mental task were involved. In one such 

study, subjects controlled the movement of a miniature robot in a small model house by first 

selecting and working with three of the following tasks: relaxation, left hand motor imagery, 

right hand motor imagery, visualizing a spinning cube, performing elementary subtractions 

by a fixed number (for example, 64–3=61, 61–3=58, an so on), and concatenating related 

words (Millan et al., 2004). 

For wheelchair control, a recent BCI design used a combination of left-hand 

movement imagery, rest, and a word association task in which the subjects had to find 

mentally words starting with the same letter (Galan et al., 2008). 

Since BCI is a single-trial approach, spatial-domain information can also be utilized 

in addition to the time- and frequency-domains to increase the efficiency of the brain pattern 

recognition. One such successful technique, which is increasingly popular in many recent 

studies, is the Common Spatial Patterns (CSP) algorithm (Ramoser et al., 2000). Another 

method to use multichannel data for pattern separation is Independent Component Analysis 

(ICA) / Blind Source Separation (BSS) (Cichocki and Amari, 2003). Yet, online 

implementation for ICA/BSS has been feasible so far only for some very fast BSS algorithms 

(Martinez et al., 2007). A general survey of the most common BCI classification approaches, 

as well as guidelines how to choose a classifier, can be found in (Lotte et al., 2007). 

(Bashashati et al., 2007) offer a complimentary overview of the algorithms used in the 

various signal processing stages of recent BCI systems. 
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The Brain-Computer Interfaces are a very rapidly developing and promising platform, 

which, depending on progress in contactless sensors, has the potential to become a gateway 

for brain technology to enter everyday life, and change society. 

BCI approaches using Steady-State Visual Evoked Potentials (SSVEP) have the 

capability to satisfy many of the strict requirements of an optimal BCI. In this stimulus-

driven type of BCI, each command is assigned to a separate visual stimulus, as multiple lights 

or patterns flicker or reverse at slightly different frequencies. The BCI system recognizes the 

synchronized brain responses to the specific SSVEP stimulus which the user is currently 

directing his/her attention to. 

2.2. Steady-State Visual Potentials (SSVEP) 

Steady-State Visual Evoked Potentials (SSVEP) are brain responses that are precisely 

synchronized with fast (e.g. more than 4Hz) repetitive external visual stimulation such as 

flashes, reversing patterns or luminance-modulated images. SSVEP responses can be 

measured within narrow frequency bands (such as ±0.1 Hz) around the visual stimulation 

frequency, or using other signal processing methods that exploit the specific characteristics of 

the SSVEP signal, such as rhythmicity and synchronization. The strongest responses occur in 

the primary visual (striate) cortex, although other brain areas are also activated in varying 

degrees. 

2.2.1. Cortical Frequency Responses to SSVEP Stimulation 

David Regan was one of the early researchers to study extensively the various 

properties of the steady-state evoked potentials in human adults. In a series of studies he 
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found three distinct frequency response regions which he termed low-frequency (LF), 

medium-frequency (MF) and high-frequency (HF) region (Regan, 1977; Milner et al., 1972; 

Regan, 1989). For large unpatterned flicker (with very low spatial frequency), the maximal 

mean response was produced by ~10 Hz stimulation in the LF region, while the peak in the 

MF region (13-25 Hz) was found at a flicker rate of about 18 Hz, and the HF (40-60 Hz) local 

maximum was between 45 and 50 Hz (Regan, 1968). The three peak amplitudes in the LF, 

MF and HF regions were in an inverse relationship with frequency, as brain responses 

declined at faster flicker rates. 

The results for small-check reversals with 0.2° arc check size (high spatial frequency) 

showed stronger preference for low-frequency stimulation, peaking at about 7 Hz, while 

SSVEP responses for larger checks with 0.7° arc size were more distributed and more similar 

to unpatterned flicker. Both for small and larger checks, SSVEP amplitudes were measured 

only up to 20 Hz and no conclusions were offered for higher frequencies. Regan 

hypothesized that responses to stimuli with very high spatial frequencies have low temporal 

frequency preference, while increasing the check size leads to a mixture of the (different) 

pattern-specific and flash-specific mechanisms (Regan and Richards, 1973). 

Pastor (Pastor et al., 2003) studied the EEG responses to 50ms white strobe flashes 

using 14 frequencies ranging from 5 to 60 Hz. They found the amplitude of the maximal EEG 

response at 15 Hz for occipital areas and at 25 Hz for frontal areas. The study presented also 

measurements of the regional cerebral blood flow using positron emission tomography (PET) 

during visual stimulation at 5, 10, 15, 25, and 40 Hz. Their PET results showed activation of 

the primary visual cortex with the maximum at 5 Hz when comparing the five tested 

stimulation frequencies. Earlier PET research had found the strongest response peak in the 

occipital cortex in the LF region at 7-8 Hz using both goggles with a grid of embedded red 
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lights (Mentis et al., 1997), as well as large black-red checkerboards (Fox and Raichle, 1985).

Pastor et al explained the difference with the limited frequency sample of their scans.  

NIRS measurements demonstrated results consistent with PET studies. Koch (Koch et 

al., 2006) reported that the NIRS vascular response to red LED light with 5 ms duration 

indicated a maximum at 7-8 Hz. They used the deoxy-hemoglobin changes as a measure, 

since they inversely correlate with BOLD contrast as assessed in fMRI. The same study by 

Koch (Koch et al., 2006) measured also the EEG responses to the flicker stimuli (1, 5-15 Hz). 

They found SSVEP peaks at 5 Hz and 11 Hz, with weaker maxima at 20-25 Hz. 

Experiments comparing EEG and MEG responses to SSVEP demonstrated further 

disparities in measuring the frequency dependency of the brain as registered using different 

techniques. Thorpe (Thorpe et al., 2007) studied the frequency preferences to large black-

white checkerboard reversals with driving frequencies between 2 and 20 Hz. Using EEG, 

they found peak SSVEP power in the 15-20 Hz range, which had no counterpart in the MEG 

data. In addition, both EEG and MEG recordings indicated also 4-8 Hz and 10-14 Hz 

maxima. 

Some EEG studies have noted a lower frequency dominance of the brain’s responses 

for some types of stimuli. Flickering green concentric rings evoked maximal SSVEP at 8 Hz 

(Ding et al., 2006) and for high-luminance LED flicker Krishnan (Krishnan et al., 2005) 

found a near-linear decline in the SSVEP response with frequency, peaking at 4 Hz. 

However, a recent EEG experiments by Srinivasan, Bibi and Nunez (Srinivasan et al., 2006) 

showed that dense random dot pattern stimuli flickering at 16 frequencies between 3 and 30 

Hz elicited maximal occipital evoked responses at 8 and 12 Hz. Interestingly, when they used 

a Laplacian transformation to process the EEG data, separate peaks appeared at 7 Hz and 11 

Hz for the left and right hemispheres. 
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In spite of the numerous attempts to reveal the frequency dependence of the brain to 

fast periodic visual stimuli, as described above, the results are rather diverse. Different 

measurement techniques may be also useful in establishing indisputable evidence about the 

optimal frequency of the SSVEP stimuli. In one such promising approach, transcranial 

magnetic stimulation (TMS) was used to suppress the normal response to briefly flashed 

letters, as the delay between the visual stimulus onset and the delivery of the magnetic pulse 

to the occipital cortex was varied between 0 and 200 ms in 20 ms steps (Amassian et al., 

1989). The suppression of the flash response was maximal when the lag was 80 ms in two of 

the subjects and 100 ms in one subject. This important finding points to the significance of 

the processes occurring in the occipital cortex at SSVEP frequencies of 10-12 Hz. 

Computer displays use commonly refresh rates of 60-75 Hz, which, in spite of the 

lack of conscious perception in direct gazing, can also evoke steady-state visual responses. 

Lyskov (Lyskov et al., 1998) specifically measured these brain responses and found 

significant differences for 60 Hz and 72 Hz screen refresh, and for luminances of 65 cd/m
2

and 6 cd/m
2
. Bright white stimulation elicited twice stronger amplitudes for 60 Hz than for 72 

Hz (0.51 vs 0.26 mV), while the amplitudes for dark-blue screens were substantially lower 

and closer in value (0.15 vs 0.11 mV). Herrmann (Herrmann et al., 1999) also found 75-80 Hz 

monitor-induced SSVEP transients in their data, even though they didn’t record control 

measurements as in (Lyskov et al., 1998) to determine the influence of residual electrical 

fields from their computer screen equipment.
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2.2.2. Time Dynamics of the SSVEP Response 

Recent EEG studies examine mostly relatively short-term SSVEP oscillations or 

otherwise ignore the oscillation envelope changes in time (Krishnan et al., 2005) which could 

be substantial especially at higher frequencies.  

Even though researchers were using more limited equipment several decades ago, van 

der Tweel (van der Tweel, 1964) offered an SSVEP onset example in one subject in which 

the baseline levels were exceeded after about 300 ms of stimulation, while a subsequent study 

by Regan (Regan, 1966) showed the long-term SSVEP responses in an ‘idealized’ 

representation of 15.5 Hz SSVEP responses to large 14° arc stimuli. Following the initial 

onset transient rise and time course over the first 14 s of stimulation, he found a gradual 

increase, after which the synchronous activity dropped substantially. Regan postulated the 

existence of an adaptive neural mechanism which was suppressed after 12-20 sec of 

stimulation. No psychophysiological correlates (perception) of these response amplitude 

changes were observed by the experimental subjects. 

These studies used hardware filters with long time constants and researchers assumed 

that the narrow-band SSVEPs exhibit very little variability in the running average. However, 

when Regan compared these results to data filtered by a digital computer, he found much 

larger variability in the SSVEP dynamics (6Hz) (Regan, 1977). Regrettably, he dismissed the 

possibility for a time-variable SSVEP response by suggesting that it was due to the wider 

pass-band of the computer filter as compared to the hardware Fourier analyzer (with 7 s 

filters), so that more ‘noise’ passed through from the adjacent EEG frequencies. 

Nevertheless, he pointed out that the SSVEP dynamics is also dependent on stimulus control 

(e.g. accommodation, fixation). 
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Interestingly, Watanabe (Watanabe et al., 2002) found fast activation of parieto-

occipital areas at 100-400 ms which was followed by slower occipital responses which 

developed until up to 1000 ms after the 10 Hz stimulation onset. They suggested that the 

initial parieto-occipital response may be part of a defensive mechanism temporarily inhibiting 

the occipital response to prevent brain hyperactivity due to the flicker. 

Attentional mechanisms have also been shown as a possible mediator responsible for 

time delays of 0.6-0.8 s between cue onset and SSVEP facilitation (Müller et al., 1998). 

2.2.3. Additional Parameters of the SSVEP Response 

While part of the differences in the reported frequency dominance may be due to the 

diversity of the captured brain processes and areas depending on the recording modality, 

SSVEP stimulus parameters such as spatial frequency, luminance, contrast and color also 

play a crucial role (Regan, 1989). Regan showed that patterned checkerboard stimuli with 

small checks (such as 0.2° arc side) exhibit low-frequency preferences with response peaks at 

~7 Hz, while patterns with larger checks (such as 0.7° arc side) have a higher frequency 

preference, similarly to unpatterned flicker stimuli (Regan, 1977; Regan, 1989). It has been 

hypothesized that checks or gratings of less than 0.5° arc stimulate predominantly spatial 

frequency and contrast detectors, and those with size of more than 0.7° arc activate luminance 

detectors (Maffei, 1982). As demonstrated by Regan (1977) in measurements with varying 

check sizes (up to 1.3° arc in size) for the normal eye, the relatively small check sizes of 

0.25°-0.5° arc elicited maximal evoked responses. This supported other evidence that patterns 

with a high spatial frequency (3-4 cpd) enable maximal contrast sensitivity (Kelly, 1976). 

However, for subjects with pooh visual acuity (less than 20/20) patterns with very 

high spatial frequency may become blurred (Sokol and Moskowitz, 1981), thus weakening 



32 

 

the brain activation. Age (Sokol et al., 1981; Birca et al., 2006) and gender (Emmerson-

Hanover et al., 1994) may also alter the pattern evoked potentials, although some studies did 

not find a gender effect (Birca et al., 2006). 

Cortical SSVEP oscillations have been shown to depend strongly also on the 

proximity of simultaneously displayed stimuli (Fuchs et al., 2008). In addition, selective 

spatial attention and covert attention facilitate strong modulations of the SSVEP responses 

(Müller et al., 1998; Müller and Hillyard, 2000; Fuchs et al., 2008) which may be dependent 

on frequency (Ding et al., 2006). 

2.2.4. Activation of Brain Areas During the SSVEP Response 

Simple one-dipole sensory models may be inadequate to explain the processes 

participating in the SSVEP dynamics. Mentis et al (1997) suggested that synchronized striate 

responses at all frequencies are due primarily to input from the subcortical lateral geniculate 

nucleus (LGN), while slower activation in the middle temporal (MT) gyrus reflects the 

perception of apparent motion. Indeed, in a direct measurement with implanted electrodes in 

nonphotosensitive epileptic patients, Krolak-Salmon (Krolak-Salmon et al., 2003) 

demonstrated clear responses to high-frequency 70 Hz screen refresh rate flicker in the LGN, 

the optic radiation and in V1/V2 cortex. They suggested that flicker responses were driven 

along the retinogeniculostriate pathway. One probable hypothesis is that, diverging from the 

M and P layers of the LGN, responses to stimuli with high temporal frequency are carried 

along the faster magnocellular (M) pathway, while the parvocellular pathway are responsible 

for responses to stimuli with high spatial frequency. 
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Fig. 3. SSVEP brain responses to fast repetitive 14Hz stimulation using a small checkerboard 

(Bakardjian et al., 2007a). SSVEP brain responses are most prominent in the visual 

(occipital) cortex and parieto-occipital areas, although fronto-lateral areas are also activated. 

The main cortical SSVEP activation occurs in the primary visual cortex (V1), but 

there is also fMRI evidence of more lateral visual sources (MT/V5) in the motion-sensitive 

areas of cortex for 6 Hz circular grating stimuli (Di Russo et al., 2007). Using 10 Hz 

stimulation, Watanabe (Watanabe et al., 2002) found also activation of parieto-occipital areas 

followed by slower occipital responses. 

Another study demonstrated, using fMRI for 3-14 Hz responses, that apart from the 

occipital cortex medial frontal cortex activity was also significantly increased (Srinivasan et 

al., 2007). However, the frontal cortex was substantially more frequency-dependent, with 

maximal peaks between 3 and 5 Hz, as well as further local maxima between 10 Hz and 14 

Hz (strongly dependent on the individual subject). The same study also found that some 

occipital voxels were positively correlated to frontal voxels, and others were negatively 
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correlated, thus forming functionally-synchronized and functionally-distinct large-scale 

networks. 

2.2.5. Photosensitive Epilepsy and Its Prevention 

Between 4 and 9% of the population carries the risk of sensitivity to visually-induced 

seizures (Erba, 2001), which are induced by the physical characteristics of a visual stimulus. 

Photosensitivity is greatest for flash frequencies between 9 and 18 Hz, although nearly 50% 

of sensitive patients respond to frequencies of up to 50 Hz, and the range of reactivity extends 

from 1 to >60 Hz (Jeavons and Harding, 1975). An epileptiform EEG response to visual 

stimulation is called a photoparoxysmal response (PPR). 

The “pocket monster” (Pokemon) incident on December 16, 1997 received a world-

wide attention, as almost 700 people (mostly children) in Japan were urgently treated for 

seizure symptoms after watching a television animated cartoon (Takahashi and Tsukahara, 

1998). Large 12-Hz red frames alternated with blue frames lasting for 4 s in this cartoon 

induced seizures both in healthy people and people with latent photosensitivity but who had 

never had seizures.  

Since then strict guidelines for television broadcasting have been successfully 

implemented to ensure appropriate visual content regarding flicker frequency and size, 

alternating patterns and color composition, especially regarding the red color (Takahashi and 

Fujiwara, 2004; Fisher et al., 2005). For pattern stimulation, these guidelines for prevention 

of photosensitive epilepsy set the following requirements (Harding et al., 2005; Wilkins et al., 

2005): If the pattern occupies no more than 25% of the displayed screen area, and if the 

pattern luminance of the lightest stripe is >50 cd/m
2
, and if the pattern is presented for ≥0.5 s, 

then the pattern must contain ≤5 light-dark pairs (if moving, oscillating, flashing or reversing 
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in contrast), or ≤8 light-dark pairs (if stationary), or ≤12 light-dark pairs (if drifting 

smoothly). Red-cyan color combinations are most epileptogenic. 

Other prevention measures include also individual filtering of the visual information, 

for example, using glasses that are blue and cross-polarized (Kepecs et al., 2004) or goggle-

based compound optical filters to provide reliable PPR inhibition (Takahashi et al., 2001). 

Reducing the relative size of the stimulus according to guidelines above by moving further 

back from it (e.g. distance of >2.5 meters for a television set) may also serve as an 

immediately available and helpful measure. 
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Table 5. Summary of Steady-State Visual Evoked Potentials (SSVEP) studies reviewed in 

this chapter 

SSVEP-Related Property Studies

Frequency Response Regan, 1968-1989 (white squares); Watanabe et 

al., 2002; Milner et al., 1972; Fox and Raichle, 

1985 (large black-red checkerboards); Mentis et 

al., 1997 (goggles with embedded red lights); 

Srinivasan et al., 2006 (random dots); Srinivasan et 

al., 2007; Krishnan et al., 2005 (LED flicker); Koch 

et al., 2006 (red LED flicker, using NIRS&EEG);

Ding et al., 2006 (green concentric rings); Pastor et 

al., 2003 (white strobe flashes); Thorpe et al., 2007 

(large black-white checkerboards); Amassian et al., 

1989 (using TMS - transcranial magnetic 

stimulation)

High-frequency response to 

computer screen flicker

Lyskov et al., 1998; Herrmann et al., 1999; Krolak-

Salmon et al., 2003

Effect of Spatial Frequency Kelly, 1976; Sokol and Moskowitz, 1981

Effect of Size Maffei, 1982

Effect of Spatial Attention Ding et al., 2006 (green concentric rings); Fuchs et 

al., 2008; Müller et al., 1998; Müller and Hillyard, 

2000

Effect of Covert Attention Müller and Hillyard, 2000

Effect of Proximity Fuchs et al., 2008

Response Onset Müller et al., 1998; Van der Tweel, 1964

Response Time Dynamics Watanabe et al., 2002; Krishnan et al., 2005 (LED 

flicker)

Activated Brain Areas Di Russo et al., 2007; Srinivasan et al., 2007; 

Mentis et al., 1997 (goggles with embedded red 

lights); Watanabe et al., 2002; Krolak-Salmon et 

al., 2003

Effect of Age Birca et al., 2006; Sokol et al., 1981

Effect of Gender Emmerson-Hanover et al., 1994; Birca et al., 2006

Photosensitive epilepsy and 

prevention

Wilkins et al., 2005; Takahashi and Tsukahara, 

1998; Takahashi et al., 2001; Takahashi and 

Fujiwara, 2004; Fisher et al., 2005; Harding et al., 

2005; Jeavons and Harding, 1975; Kepecs et al., 

2004
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2.3. SSVEP-Based BCI Approaches 

Recently, SSVEP BCI systems have gained a special place in the BCI paradigms 

continuum due to the possibilities they offer. SSVEP-BCIs are useful in applications which 

present the following major requirements: 

1) large number of BCI commands is necessary (in SSVEP BCI limitations are mostly 

defined only by the design) 

2) high reliability of recognition is necessary (in SSVEP BCI patterns are clearly 

distinguishable by frequency) 

3) no training (or just a few minutes of classifier training) is allowed 

4) self-paced performance is required 

as well as the following restrictions: 

5) equipment for visual stimulation is permissible (e.g. computer display, LED panel) 

6) command delays of 1-3 s are allowed 

7) user is capable of small eye movements 

8) user is capable of mild but sustained attention effort 

9) user’s visual system is not engaged in other activities

2.3.1. Designs of SSVEP-Based BCI Systems 

Recognizing the promise of the SSVEP-based BCI approach, Sutter (Sutter, 1984) 

described one of the earliest successful online implementations of this paradigm. The BCI 

system suggested by him featured 64 targets, with best success rates of more than 90 %, as 

well as decision delays in the 1.5 s range. Since the system was designed to use a single flash 
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frequency of 10 Hz, the selections were based on a technique called binary m-sequence, in 

order to avoid the unacceptably long lags in case of purely sequential testing of all targets. 

Subsequently, two different approaches to SSVEP BCI were proposed by researchers 

at the US Air Force Research Laboratory. The first approach (McMillan and Calhoun, 1995;

Middendorf et al., 2000) required the users to consciously modulate the relative amplitude 

and phase of their SSVEP responses to 13.25 Hz flicker as a result of neurofeedback training. 

This allowed them to roll a simple flight simulator in 0.5° increments, to the right if the 

SSVEP amplitude was increased, and to the left, if the amplitude was suppressed. Most 

operators achieved satisfactory control after 30-minutes of training, while trained users 

reached success rates of 80-95%. Two more applications were tested with the same 

amplitude/phase method – knee angle control with a functional electrical stimulator, and a 

switch selection design. In the second approach (Jones et al., 1998; Middendorf et al., 2000),

two stimuli flickering at 17.56 and 23.42 Hz were shown, and the command selection was 

based on their relative spectral amplitudes. The task was to select one of two virtual buttons 

on a computer screen. The users achieved a 92% mean success rate, and command delays 

were in the 1.2-3 s range (mean 2.1 s). This more efficient approach applied the basic 

principles of most current SSVEP BCI systems which identify synchronized brain responses 

to flickering or reversing visual stimuli on the basis of their different frequencies. 

The advantages of SSVEP-based BCI systems, regarding a relatively very high 

number of commands when compared to other BCI paradigms, were demonstrated at 

Tsinghua University. In a phone number selection design, they presented a 12-command BCI, 

using 6-14 Hz flicker and threshold command selection, even though the inter-subject 

variability was quite high (Cheng et al., 2002). 

Later, another study from the same group demonstrated a 48-command BCI system, 

which was designed with light emitting diodes (LEDs) in blinking buttons (Gao et al., 2003). 
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They used flicker with frequencies in the 6-15 Hz range, detected with FFT, as well as 

specialized hardware, which removed the need for a computer. For the single subject in that 

study, they reported a mean success rate of 87.5% and an average delay of 3.8 s for command 

recognition (68 bits/min transfer rate). 

Gaming could be a natural target application for the SSVEP BCI paradigm, as shown 

by Lalor (Lalor et al., 2004). In a 3D immersive game application called MindBalance, the 

player’s goal is to balance an animated character on a tightrope by gazing at two reversing 

checkerboard patterns. In the preliminary phase, the individual EEG responses to reversal 

frequencies between 6 and 25 Hz were tested and two best frequencies were selected. Three 

feature extraction methods were applied offline – squared FFT (Welsch’s power spectral 

density estimate), FFT of the autocorrelation function, and autoregressive model of order 5 

which yielded best results across users. Methods 1 and 2 were evaluated online with the 

second harmonic of the reversal frequencies, and a linear-discriminant classifier showed 

success rates between 77 and 90 %. 

Müller-Putz (Müller-Putz et al., 2005) studied the performance of their 4-class 

SSVEP BCI system when three harmonics of each target frequency were included in the 

classification. They used LED flicker of 6, 7, 8, 13 Hz frequency attached on top a computer 

screen with a cockpit design providing the feedback. The evaluation was performed in 5-

second trials and repeated 4 times on different days, including a different classifier, and a 

simplified screen without the cockpit. The online success rate varied between the four 

conditions, ranging from 35.1 % to 95.8 %. A subsequent study sought to clarify the best 

measurement and classification parameters, which resulted in an improved mean performance 

of 74 % (Müller-Putz et al., 2008). 

The NASA Ames Research Center also studied the possibilities of SSVEP-based BCI 

control in a 4-command design called Think Pointer BCI. The user attempted to follow a line 
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drawn on a world map by attending to one of the four reversing checkerboards with fixed 

positions on the edges of the computer screen (Trejo et al., 2006). The temporal frequencies 

used were between 5 and 7 Hz, and the user intent was evaluated using a kernel partial least 

squares classifier (KPLS) which utilized the EEG responses at the second harmonic, as well 

as at the fundamental frequency of the SSVEP. They reported accuracy of 80-100 % across 

subjects and sessions, while the command lag was 1-5 s. An observation was noted that 

apparently auditory guidance resulted in longer delays than a visual guidance for the BCI 

commands. 

In the past decade, an increasing number of SSVEP BCI systems have been presented 

to the signal processing and neuroscience research communities and each of these systems 

offer their own advantages. One such system is, for example, the 2-class Braunschweig 

SSVEP BCI which directs the movements of a remote-controlled truck using capacitive EEG 

sensors without direct contact with the scalp skin (Oehler et al., 2008). Further 

implementations include the Aalborg SSVEP BCI (Nielsen et al., 2006), the Geneva SSVEP 

BCI (Grave de Peralta et al., 2008), the Bremen SSVEP BCI (Friman et al., 2007; Allison et 

al., 2008), also with an application for wheelchair control (Teymourian et al., 2008), the Lodz 

SSVEP BCI (Materka and Byczuk, 2006), and the Keio SSVEP BCI (Ogawa et al., 2008). 

2.3.2. Signal Processing Methods in SSVEP-Based BCI Systems 

The most wide-spread signal processing technique to extract the SSVEP responses of 

the brain from the raw EEG data is based on power spectral density estimates using Fast 

Fourier Transform (FFT) of a sliding data window with a fixed length (usually more than 3 

s). The main idea of this method is that the frequency component with the highest spectral 

power corresponding exactly to one of the SSVEP stimulation frequencies will be considered 
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as a BCI command (Middendorf et al., 2000; Gao et al., 2003; Trejo et al., 2006; Lalor et al., 

2004). Template matching (Sutter, 1984) and recursive outlier rejection (Vidal, 1977) have 

also been used to show the feasibility of SSVEP-BCI systems in spite of their disadvantages. 

Other methods which attempt to improve on robustness upon the FFT-based methods are 

autoregressive spectral analysis (Allison et al., 2008; Penny et al., 2000), and the frequency 

stability coefficient (SC) which has been shown to be better than power spectrum for short 

data windows; although training necessary for building the SC model (Wu et l., 2008). 

Furthermore, canonical correlation analysis (CCA) is also an efficient method for online 

SSVEP-BCI, as the required data window lengths are shorter than those necessary for power 

spectrum estimation (Bin et al., 2009).  

2.3.3. Can effective SSVEP BCI control be achieved without dependence on eye 

movements? 

SSVEP-based Brain-Computer Interfaces are considered ‘dependent’ on the user’s 

ability to move the gaze (foveal vision) in order to attend the selected stimulus. However, 

following the lead of the SSVEP research community (Müller and Hillyard, 2000), several 

studies have undertaken to demonstrate that even disabled users with very limited eye 

movements may be able to use SSVEP BCIs. Kelly and coworkers found a 20% drop in the 

classification accuracy when nearby flicker stimuli were attended covertly as compared to 

overt attention (Kelly et al., 2004). In two more studies they attempted to quantify the effects 

of covert spatial attention as subjects were presented with two rectangular flicker stimuli 

flickering at different rates and were asked to attend to the letters (A to H) on the top of them. 

In the first study (Kelly et al., 2005a), a realistic BCI system was tested with a pilot version 

of the visual-spatial attention control (V-SAC) design. Only two electrodes and flicker of 10 
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and 12 Hz were used (these frequencies were found to be optimal). Six out of eleven subjects 

were able to produce the brain responses to achieve at least 72% in at least one out of five 

trials. The best subject achieved up to 93.3 % success in selecting a covertly attended 

flickering target. Their online SSVEP selection procedure employed weighted spectral ratios 

and thresholding. In another report (Kelly et al., 2005b), 64 channels of EEG were recorded 

during a similar (modified) task including two couples of frequencies, one in the alpha band 

range (9.45 and 10.63 Hz), while the other was higher (14.17 and 17.01 Hz). In this study, 

linear discriminant analysis (LDA) was employed and the direction of spatial attention was 

determined with a mean success rate of 70.3 % for the higher-frequency flicker (information 

transfer rate of 2.1 bits/min). A combination of SSVEP and the alpha band modulation 

yielded higher classification rates. The authors noted that the SSVEP topography across 

subjects was not consistent enough, so that the BCI channel selection should be performed 

individually for each subject, but concluded that using covert attention to visual flicker is 

indeed feasible for BCI.

In a recent development, Zhang and colleagues (Zhang et al., 2010) demonstrated an 

SSVEP-BCI system based on covert attention to two large sets of flickering and rotating 

color dots. The system achieved an average online classification accuracy of 72.6 % for two 

commands. 

Allison (Allison et al., 2008) also showed that covert attention to checkerboard 

reversal and line stimuli without gaze shifts can enable sufficiently strong SSVEP responses 

for BCI control in about half of their subjects. Checkerboard patterns elicited much stronger 

responses than lineboxes. The checkerboard reversal rates were chosen at 6 and 15 Hz in test 

runs among 6 frequencies (6-30Hz). After showing the general feasibility of SSVEP BCI 

without gaze shifts, they suggested that “the labels ‘dependent’ and ‘independent’ BCI might 

be best regarded not as absolutes, but endpoints of a continuum.”
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Table 6. Summary of SSVEP-BCI studies reviewed in this chapter 

Number of 

Commands

Type of Flicker Design Specifics Study

2 Very large 

checkerboards

Video camera mounted 

on remote-controlled 

toy truck

Oehler et al., 2008 

(Braunschweig group)

2 Checkerboards MindBalance game Lalor et al., 2004

2 White squares on 

computer screen

Covert attention Kelly et al., 2004, 

2005a,b

2 Luminance control 

on computer screen
One of the first 

feasibility studies

Jones et al., 1998

2 Large boxes on 

screen

User modulates SSVEP

amplitude/phase

McMillan and Calhoun, 

1995

2 White ‘buttons’ on 

computer screen

First comparison of 

amplitude- and frequency-

controlled SSVEP-BCI

Middendorf et al., 2000

2 White fluorescent 

tubes

User modulates

amplitude/phase of 

SSVEP

Middendorf et al., 2000

2 Large stripes, 

checkerboards

Covert attention Allison et al., 2008

2 Rotating color 

dots

Covert attention Zhang et al., 2010

2 - 3 Large color 

boxes

Virtual environment Grave de Peralta et al., 

2008 (Geneva group)

4 - Checkerboards Think Pointer BCI

(NASA world map)

Trejo et al., 2006 (NASA 

group)

4 LEDs Airplane cockpit design Müller-Putz et al., 2005

4 LEDs Grid of lights Müller-Putz et al., 2008

2 - 4 LEDs Simulated wheelchair Teymourian et al., 2008 

(Bremen group)

4 LEDs Lights mounted under 

computer screen

Ogawa et al., 2008 (Keio 

group)

6 (sequential 

presentation)

LEDs Study of methods: not 

actual BCI

Friman et al., 2007 

(Bremen group)

2 - 8 LEDs Anti-phase flicker of 

LED couples

Materka and Byczuk, 

2006 (Lodz group)

10 LEDs Phone number selection Cheng et al., 2002 

(Tsingua group)

48  (1 subject) LEDs Grid of lights Gao et al., 2003 

(Tsinghua group)
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2.4. Affective Processes in the Brain (Emotions) and 

Connection to SSVEP Research 

Emotional reactions in humans are the result of complex interactions between external 

sensory stimuli, brain circuitry, personal experiences and neurotransmitter systems. Emotions 

involve widespread affective activities in the nervous system, from the cerebral cortex to the 

autonomic nervous system. These processes aim to mobilize rapidly an individual’s motor 

and cognitive reactions to situations appraised as threatening or beneficial. 

2.4.1. Models of the Emotional Continuum and classification Schemes 

Emotions involve different affective dimensions (Heilmore and Gilmore, 1998), such 

as emotional experiences (inner feelings), emotional expression (display of feelings), 

emotional memories (recall, encoding) (Banich et al., 2009), and emotional imagery (Holmes 

and Mathews, 2010), Emotional experiences are usually relatively short-term responses to 

environmental or cognitive stimuli. However, when the corresponding affective states are 

sustained over substantially longer time spans, this may lead to neuropsychological 

phenomena such as moods (e.g. depression, anxiety, and elation), plots (e.g. love, hate, grief, 

jealousy), or affective personality traits (e.g. hostility) (Ekman, 1999). Emotional expression

involves subtle or more overt changes in physiological and communicative responses, such as 

facial expression and skin color, voice pitch, body posture and various aspects of behavior. 

Emotions are measured using a variety of classification schemes, ranging from simple 

evaluation of emotional reactions to complex classes involving social communication 

(Adolphs, 2002; Mauss and Robinson, 2009). Emotional experiences are often studied in 
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terms of valence (from positive to negative) (Rozenkrants et al., 2008), or arousal (from low 

to high intensity) (Bradley et al., 2007). Russell’s two-dimensional model of affect (Russell, 

1980) uses valence (positive-negative axis) and arousal (low-high intensity) to map the 

emotion experience continuum (Posner al., 2009). Plutchik’s three-dimensional circumplex 

cone model adds two more dimensions – similarity (from same to polar opposites) and 

orthogonality (from primary emotions to mixed ones) (Plutchik, 2001). This model, however, 

is based on eight discrete primary emotions which are arranged as four pairs of opposites (joy 

versus sadness, trust versus disgust, fear versus anger, and surprise versus anticipation). 

Secondary emotions with varying similarity can be produced by mixing the primary ones, in 

the same way as the colors of the spectrum. For example, according to this model love is a 

combination of joy and trust, while disapproval is a combination of sadness and surprise, or 

submission – between trust and fear. Other researchers have also proposed models assuming 

a small number of fundamental emotions, such as emotion hierarchy trees (Fischer et al., 

1990) featuring emotion clustering with a top-down organization – positive emotions: love 

(fondness, infatuation) and joy (bliss, contentment, pride); negative emotions: anger 

(hostility, annoyance, jealousy, contempt), sadness (grief, agony, loneliness, guilt), fear 

(horror, worry). Using facial muscle responses, Izard has identified another set of ten basic 

emotions: interest, enjoyment, surprise, distress, anger, disgust, contempt, fear, 

shame/shyness, and guilt (Izard, 1977). However, in a critical view of the concept of ‘basic’ 

emotions, Ortony and Turner argued that even though their origins may be traced to 

biologically ‘hardwired’ affective systems, these emotions cannot be singled out as special, 

the criteria for their selection are controversial and different in each approach, and it is not 

clear how basic emotions can be actually combined (Ortony and Turner, 1990). They 

proposed that actually emotions may consist of emotional components (some of them basic) 

instead of other emotions. In spite of the ensuing scientific controversy (Ekman, 1992; 
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Panksepp, 1992; Izard, 1992) which was not fully resolved (Ortony and Turner, 1992), these 

differing points of view have raised interesting questions about how emotions are shaped, 

controlled and quantified. 

2.4.2. Emotion-Cognition Interactions 

Emotions (affective processing) and thinking (cognitive processing) are two important 

tools for the brain to evaluate and influence the environment in a most efficient way. It is 

often difficult to separate clearly emotion and cognition, because they may have common 

components (Gray et al., 2002; Simpson et al., 2000). Recent studies have begun to improve 

the understanding of the complex and mutually beneficial relationship between emotion and 

cognition. Extending previous theories of universal emotion building blocks, Izard has drawn 

a sharp distinction between two types of emotions – brief basic emotions (such as infant’s joy 

for seeing her mother’s face) and complex emotion-cognition interactions (emotion schemas)

(Izard, 2009). Although affective-cognitive interactions are often elicited by conscious 

appraisal processes, they can also be influenced by memories, imagination, thoughts, or 

changes in hormonal levels and neurotransmitters. Furthermore, according to this view of 

affect, frequently recurring emotions schemas could stabilize as emotion traits (temperament 

or personality traits). Nevertheless, the processes involved in the cognitive mapping of the 

emotional value of stimuli are not fully understood yet. Cognitive reappraisal may depend on 

factors such as regulatory goals and deployed strategy. For example, conscious self-

reappraisal of negative emotions in a positive or detached way (down-regulation) can aid 

successful coping with anxiety or depression, while excessive worry (up-regulation) can 

enhance them (Ochsner et al., 2004). Furthermore, emotion-cognition interactions facilitate 

emotion regulation depending on how we appraise the self-involvement in a situation. 
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Interestingly, there is some evidence that different appraisal patterns of the same situation are 

sufficient to cause different emotions (Siemer and Mauss, 2007). 

2.4.3. Emotions – Cultural Influences and Gender 

Some aspects of emotion can be strongly influenced by additional factors such as 

cultural / social differences (Russell, 1991; Soto and Levenson, 2009), gender (Sabatinelli et 

al., 2004), neurotransmitter levels (Kemp et al., 2004b), sleep (Walker and van der Helm, 

2009) and even emotion stimulus position in the visual field (Liu and Ioannides, 2010). 

In spite of many similarities, cross-cultural differences in emotion-cognition 

interactions could be significant, especially regarding emotion appraisal, expression and 

regulation (Mesquita and Frijda, 1992; Jack et al., 2009). When Japanese subjects viewed 

facial expressions at low affective intensities, they tended to think that the poser was 

experiencing a more intense feeling of the emotion than was actually portrayed. On the other 

hand, when Americans viewed high-intensity expressions, they perceived emotions as being 

portrayed in an exaggerated way and therefore were inclined to assume that the poser did not 

feel the emotion as intensely as the facial expressions suggested (Matsumoto et al., 2002). 

Wide-ranging cultural differences in emotion regulation (reappraisal and suppression) were 

further demonstrated in a study across subjects from 23 countries (Matsumoto et al., 2008).

Higher scores on emotion suppression, as well as positive correlation between reappraisal and 

suppression, were measured in participants from cultures which valued highly social order 

and hierarchy, while subjects from cultures that valued individual affective autonomy tended 

to elicit lower scores on suppression, with negative correlation between cognitive reappraisal 

and emotion suppression. In line with the observation that Japanese subjects typically exhibit 

lower levels of emotional expression, a study with 15 French and 15 Japanese volunteers 
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viewing neutral and affective pictures in their respective countries showed significant 

differences in their late evoked brain responses. Cultural modulations between the two groups 

were found in the parieto-occipital brain areas starting from 170ms after an affective picture 

was shown, and especially in the 250-450ms range, with decreased emotional component 

amplitudes in the Japanese population (Hot et al., 2006). Nevertheless, in this study 

similarities were found the early brain responses (105-140ms) showing no cross-cultural 

differences in this early time range, although emotion-related effects were detected in both 

groups.  

Russell et al. (1989) also found some common points in the emotion experience 

between cultures as participants from several countries judged emotional words and facial 

expressions in a way that supported a similar circular representation of a set of feelings in 

their two-dimensional circumplex model. Nevertheless, later he initiated another scientific 

controversy and a round of useful discussions by questioning the universality of emotions 

recognition from facial expressions across cultures. Specifically, he concluded that the 

association between facial expressions and emotion labels may vary with culture while the 

forced-choice format of experiments to gather data inhibits this diversity (Russell, 1994, 

1995). Opponents of this critical review reiterated intensely the universality of emotion and 

emotional expressions (Ekman, 1994; Izard, 1994). As always, the most plausible explanation 

may be found between the extremes, in the view that emotions contain both culture-specific 

and pan-cultural components (Russell, 1991). 

Gender influences in emotion processing have been demonstrated in a number of 

studies (Codispoti et al., 2008; Sabatinelli et al., 2004; Kemp et al., 2004a). Gender may 

shape emotional experience and expression due to genetic or hormonal balance differences, 

as well as developmental factors such as traditional educational constraints during upbringing 

of the young. Women may be more accurate than men in judgments of emotional expressions 
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(Hall and Matsumoto, 2004). Female subjects also responded stronger to stressful emotional 

stimuli (Yang et al., 2007), and exhibited enhanced early negative ERP components (N100 

and N200) to emotional pictures, when compared to men, especially for unpleasant stimuli 

(Lithari et al., 2010). Men, on the other hand, responded to positive visual stimuli with a 

stronger brain activity in the frontal lobe (inferior and medial frontal gyrus), as well as with a 

stronger activation of the amygdala for pleasant stimuli, while in women stronger brain 

activations in the anterior and medial cingulate gyrus were observed for pictures evoking 

negative emotions (Wrase et al., 2003). 

2.4.4. Empathy 

The recent discovery of the mirror neuron system (Gallese et al., 1996), which was 

shown to activate both when a monkey observed and performed a goal-directed action (see 

(Keysers and Fadiga, 2008) for a review), provided a neural substrate and boosted 

substantially the understanding of another neuropsychological phenomenon – empathy. The 

ability to empathize, or share another individual’s emotions, may well be considered one of 

the building blocks of civilized society (Adolphs, 2009). Mirroring the mental states and 

emotions of others is an efficient way to simulate and understand them better, and to respond 

to critical situations in a more flexible way. Impairment of this essential social 

communication mechanism may be related to neurological disorders such as autism (Dapretto 

et al., 2006). Empathy can be not only emotional but also cognitive, involving inferential 

processes. There is some evidence that both types of mental simulation activate separate 

anatomical brain substrates (areas). Broadmann area 44 was found to be critical for emotional 

empathy, while areas 10 and 11 were important for the proper functioning of cognitive 

empathy (Shamay-Tsoory et al., 2009). Another study demonstrated that emotional empathy 
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is special, as it allowed stronger mirroring of the observed mental states than the cognitive 

empathy. Differences in neural processing involved both limbic areas (the thalamus), and 

cortical areas (fusiform gyrus and the inferior parietal lobule) (Nummenmaa et al., 2008).

Furthermore, in contrast to emotional empathy, sympathy (empathic concern) (Decety and 

Chaminade, 2003) may involve higher cognitive processes such as the projected costs and 

benefits of helping, as well as other mental manipulations (Izard, 2009). Empathic accuracy 

may also depend on cultural differences (Soto and Levenson, 2009). 

Brain activity during observation or imitation of emotional facial expressions has 

been a principal tool for studying empathy in many studies. Both observation and imitation 

activated a similar network of emotion-related brain areas, although imitation evoked 

stronger responses in the inferior frontal cortex, the superior temporal cortex, the insula, and 

the amygdala (Carr et al., 2003; van der Gaag et al., 2007). Another interesting difference 

between these ‘passive’ and ‘active’ types of empathy was that during observation of 

affective faces only the right ventral premotor area was activated, while imitation resulted in 

a bilateral activation (Leslie et al., 2004).  

2.4.5. Neuroanatomical Correlates of Emotion 

Historically, emotional processing has been attributed to the limbic system of the 

brain (Papez, 1937). Extensive recent studies have extended this knowledge and have 

identified a complex emotion-related network between cortical, limbic and paralimbic brain 

areas. Even though no single region of the brain has been found to activate in relation to all 

emotions, the medial prefrontal cortex (MPFC) was shown to be active across multiple 

emotions, especially during emotional awareness, which points to the possibility that MPFC 

may be involved in the cognitive aspects of emotion (Phan et al., 2002).  
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A critical involvement of the amygdala has been implicated in the generation and 

maintenance of fear-related processing (Phelps and LeDoux, 2005), extending to visual (face) 

and linguistic (Isenberg et al., 1999) stimuli. The amygdaloid complex itself is not a 

homogeneous structure but it consists of subnuclei each with a specific function. Inputs to the 

amygdala may involve two separate routes. A fast thalamic pathway provides simple low-

level sensory information which may also play a role in amygdala priming in expectation of 

further more detailed information about the stimulus (danger verification). The other route, a 

thalamo-cortical-amygdala pathway, involves inputs from multimodal areas and carries more 

complex/processed information (Fellous et al., 2003). For example, such amygdala 

connections with areas of the frontal cortex are able to regulate negative affect following 

cognitive reappraisal (Banks et al., 2007). Furthermore, it has been also shown that the

amygdala is able to provide direct neural feedback to neurons in ventral visual cortical 

areas V1, V2, V4, TEO and TE (Amaral et al., 2003; Freese and Amaral, 2006), thus 

modulating substantially visual sensory responses and perception. 

The anterior cingulated cortex (ACC) is another essential part of the limbic system 

involved in emotion and cognitive processing. Some evidence points to the hypothesis that 

the ACC may serve as an attentional gateway that regulates competing emotional and 

cognitive processes by correspondingly activating and inhibiting its emotional and cognitive 

subdivisions. For example, during a cognitively demanding and emotionally neutral task, 

important parts of the limbic system (the ACC affective subdivision, amygdala, insula and 

the orbitofrontal cortex) were found to be suppressed (Bush et al., 2000).  

Investigating the neuroanatomical correlates of basic emotions, sadness activated the 

subcallosal cingulated cortex (SCC), while happiness (including happy faces) and positive 

arousal activated the basal ganglia. However, the basal ganglia area also activated for disgust 

which may point to a role invoking a state of motor preparedness triggered by an emotional 
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stimulus towards a desired goal (Bush et al., 2000). Emotional valence (the positive-negative 

dimension of emotion) may be related to brain processing in cortical midline areas – the 

orbitomedial prefrontal cortex (OMPFC), the dorsomedial prefrontal cortex (DMPFC), the 

medial parietal cortex (MPC), and the insular cortex, as concluded by a recent fMRI study 

(Heinzel et al., 2005). Some of the neighboring frontal brain regions, the orbitofrontal and the 

ventromedial prefrontal cortices, could be responsible for regulating emotions. Damage to the 

orbitofrontal cortex is associated with disinhibited behavior and other social emotional 

deficits, while the ventromedial prefrontal cortex has been associated with storing memories 

of particular experiences, and may be an important element of a brain network related to 

empathy (Decety and Jackson, 2004). 
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Table 7. Summary of emotion studies reviewed in this chapter 

Emotion - Related Aspect Studies

Taxonomy of emotions Plutchik, 2001 (circumplex cone model); Adolphs, 

2002; Mauss and Robinson, 2009; Fischer et al., 1990 

(emotion clusters,hierarchy); Izard, 1977 (10 basic 

emotions based on faces); Papez, 1937 (limbic model)

Dimensions for emotion 

measurement

Posner al., 2009 (valence-arousal); Bradley et al., 

2007; Heilmore and Gilmore, 1998; Rozenkrants et al., 

2008; Russell, 1980

Brain areas Bush et al., 2000; Heinzel et al., 2005; Decety and 

Jackson, 2004; Isenberg et al., 1999 (faces and 

linguistic stimuli); Phan et al., 2002 (MPFC); Banks et 

al., 2007 (amygdala); Fellous et al., 2003 (amygdala); 

Phelps and LeDoux, 2005 (amygdala)

Emotion-cognition interactions Izard, 2009; Siemer and Mauss, 2007; Simpson et al., 

2000; Gray et al., 2002; Ochsner et al., 2004 (self-

appraisal); Phan et al., 2002

‘Are there basic emotions?’ 

controversy

Ortony and Turner, 1990; Ekman, 1992; Izard, 1992; 

Ortony and Turner, 1992; Panksepp, 1992

Gender differences Hall and Matsumoto, 2004; Wrase et al., 2003; Yang et 

al., 2007; Kemp et al., 2004a; Sabatinelli et al., 2004; 

Lithari et al., 2010; Codispoti et al., 2008

Cross-cultural differences Matsumoto et al., 2002, 2008; Jack et al., 2009; Hot et 

al., 2006; Mesquita and Frijda, 1992; Russell et al., 

1989-1995; Ekman, 1994 (universality across 

cultures); Izard, 1994 (universality)

Social differences Russell et al., 1989-1995

Emotional memories Banich et al., 2009

Emotional imagery Holmes and Mathews, 2010

Long-term changes Ekman, 1999

Effect of neurotransmitters Kemp et al., 2004b

Effects of sleep Walker and van der Helm, 2009

Stimuli: Position in visual field Liu and Ioannides, 2010

Empathy Adolphs, 2009; Carr et al., 2003; Izard, 2009; Van der 

Gaag et al., 2007; Dapretto et al., 2006 (impairments)

Empathy: Brain areas Leslie et al., 2004; Nummenmaa et al., 2008; Shamay-

Tsoory et al., 2009

Empathy: Mirror Neuron

System (MNS)

Keysers and Fadiga, 2008; Gallese et al., 1996

Empathy: Cross-cultural 

differences

Soto and Levenson, 2009

Sympathy (empathic concern) Decety and Chaminade, 2003
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2.4.6. Affective Picture Processing 

Electroencephalography (EEG) studies on the affective processing in the brain have 

been successful in distinguishing of high-arousal emotions from a neutral state observing 

augmented evoked responses to affective pictures (Lang et al., 1993; Fusar-Poli et al., 2009; 

Lang et al., 1998; Keil et al., 2002). Some studies aiming to classify positive and negative 

emotions in general have indicated valence-dependent hemispheric dominance during 

emotional activation (Rusalova and Kostyunina, 1998). Other researchers have investigated 

emotion differences based on cortical oscillations, such as gamma waves (Keil et al., 2001) 

and theta waves (Aftanas et al., 2001). A classification of eight emotions in response to 

emotional pictures (neutral, anger, hate, grief, platonic love, romantic love, joy, reverence) 

with an accuracy of 81% was reported by the MIT Media Laboratory’s Affective Computing 

Group (Picard et al., 2001) based however on non-cortical measures.  

Numerous studies have reported event-related potential (ERP) modulations due to 

affective picture processing by the brain (see (Olofsson et al., 2008) for an extensive review). 

The presented emotional picture stimuli in such studies have been varied in estimated valence 

(positive-negative) and arousal levels, typically using the International affective picture 

system (IAPS) database (Lang et al., 2005), which offers standard valence and arousal ratings 

for each stimulus.  

The earliest emotion-mediated modulations in the visual cortex, reported using EEG, 

measurements, appear in the short latency range (P1: 100-200ms) after the onset of 

observation of static affective pictures at occipito-temporal and centro-medial cortical sites 

(Schupp et al., 2003a). Enhanced early visual processing (120-170ms) in the occipito-

temporal region was confirmed also using magnetoencephalography (MEG) and minimum-
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norm estimates (MNE) source analysis (Peyk et al., 2008). Middle-latency affective visual 

responses (N2: 200-300ms) reflect further perceptual qualities of the stimuli, and are 

influenced by both the valence and arousal levels of the emotional content, even it is 

presented rapidly (Peyk et al., 2008; Olofsson et al., 2008). The P300 component (300-

400ms) reflects the brain responses in oddball-type experimental paradigms, in which the 

task relevance, motivation, arousal and attention are major determinants, while even slower 

evoked responses (400-600ms) to affective pictures may be involved in top-down cognitive 

processes and memory formation (Olofsson et al., 2008). Measurements using near-infrared 

spectroscopy (NIRS) have also confirmed the effects of emotion, with significant decreases 

in deoxygenated haemoglobin levels at occipital locations after affective picture viewing as 

compared to neutral pictures (Herrmann et al., 2007). 

2.4.7. Emergence of Affective SSVEP 

Adding emotional content to rapid SSVEP stimulus sequences may provide valuable 

insights about affective and visual processes in the brain. Several studies have provided 

strong evidence for regulatory feedback projections from emotion-processing areas to the 

visual sensory cortex, including the amygdaloid complex (Amaral et al., 2003; Baizer et al., 

1993) and the posterior orbitofrontal cortex (Barbas, 2007). However, the effects of affective 

modulation of cortical activity are not limited only to picture stimuli but have also been 

shown to evoke rapid brain response amplitude enhancements after presentation of emotional 

words (Keil et al., 2006). 

Two basic approaches have emerged recently for combining visually-evoked 

emotions and SSVEP. One approach involves superimposing flickering visual components 
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over affective pictures to measure brain response interactions, while the other method 

requires the direct presentation of flickering emotional pictures.  

The first approach to affective SSVEP was pioneered by Kemp and colleagues (Kemp 

et al., 2002) who used the subtractive steady-state probe topography (SSPT) method, 

previously developed by a team including one of the authors (Silberstein et al., 1990). 13 Hz 

white SSVEP flicker was presented using half-mirrored goggles, as the subjects directed their 

attention to affective pictures from the IAPS database on a computer monitor in the 

background. The responses were statistically compared to those from neutral images. This 

method employed SSPT-defined SSVEP ‘latency’ (phase-related) and SSVEP ‘amplitude’ 

measures which were modulated by cognitive and emotional brain activity changes during the 

task. Viewing of both pleasant and unpleasant pictures was associated with frontal SSVEP 

‘latency’ reductions, while the frontal SSVEP amplitude decreased for unpleasant images. 

Interestingly, a subsequent study showed that the frontal ‘latency’ reductions measured for 

unpleasant images were predominantly observed for female subjects and not for male ones 

(Kemp et al., 2004a). Since for the SSPT approach the SSVEP stimulation represents a 

concurrent, competing activity which is processed in parallel with the main task, SSVEP 

amplitude reductions using this method may indicate attentional resource sharing and 

increase in visual vigilance (Silberstein et al., 1990), while ‘latency’ reductions can be 

interpreted as enhanced excitatory processes during emotional and cognitive tasks. Müller 

and colleagues (Müller et al., 2008) also investigated this visual-affective resource 

competition approach by superimposing small white squares flickering at 7.5 Hz on static 

emotional images. In line with previous research, the occipital SSVEP amplitude decreased 

for competing emotional content, especially for aversive images. 

Another method to evoke affective SSVEP is to present directly affective images 

flickering rapidly at rates higher than ~6Hz (e.g. at 10Hz). Similarly to basic SSVEP, an 
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oscillatory brain response would be observed in the visual cortex which is synchronized with 

the fundamental stimulation frequency. Keil and colleagues (Keil et al., 2003; Keil et al., 

2008) applied this method using static pictures from the IAPS database, and found emotion-

related SSVEP amplitude enhancements at parieto-occipital sites (maximum response at 

electrode Pz). The phase delay of the SSVEP response was also sensitive to the affective 

content of the visual stimuli. The delay decreased at posterior brain areas associated with 

visual processing, and increased at fronto-temporal electrodes, possibly reflecting affective 

reentrant modulation of the task-related brain activity. In addition to emotional content, 

spatial attention also increased the SSVEP response amplitude (Keil et al., 2005), especially 

in the right hemisphere. The same study also found enhanced phase changes associated with 

negative emotions. In a further investigation of the properties of affective SSVEP, varying 

the image presentation rates between 1 and 16 Hz showed that SSVEP amplitude 

enhancement due to passive emotion experience was maintained for flicker frequencies up to 

12Hz (Peyk et al., 2009). Results were inconclusive for presentation rates higher than 12Hz, 

using the experimental procedures employed in that study. 

The second method of direct presentation of flickering emotional images is able to 

enhance the visual SSVEP responses of the brain (Keil et al., 2005), possibly by engaging re-

entrant pathways from emotion-regulating structures including the amygdaloid complex and 

the orbitofrontal cortex (Amaral and Price, 1984; Amaral et al., 2003; Freese and Amaral, 

2005; Freese and Amaral, 2006). Self-regulated affective functional enhancements of the 

sensory brain responses could be investigated further for practical applications such as BCI 

by using new types of engaging affective stimuli and sensitive signal processing techniques 

for SSVEP estimations, as described in Chapter 6. 
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Table 8. Summary of affective vision studies reviewed in this chapter 

Emotion-Vision – Related Aspect Studies

Brain responses to affective pictures

The International affective picture system 

(IAPS) database

Lang et al., 1993, 1998, 2005; Olofsson

et al., 2008 (review); Keil et al., 2002, 

2003, 2005, 2008; Fusar-Poli et al., 

2009; Keil et al., 2001 (gamma waves); 

Aftanas et al., 2001 (theta waves)

Brain responses to Steady-State Probe 

Topography (SSPT) using half-mirrored 

goggles (superimposed flicker)

Silberstein et al., 1990; Kemp et al., 

2002, 2004a

Brain responses to static affective pictures

with superimposed flickering white squares

Müller et al., 2008

Brain responses to flickering affective 

pictures

Peyk, Schupp, Keil et al., 2009

Left-right hemispheric differences Rusalova and Kostyunina, 1998

Affective pictures based classification of 8 

emotion (non-cortical measures)

Picard et al., 2001

Emotion-mediated modulations in the 

visual cortex (VEP)

Schupp et al., 2003a; Peyk et al., 2008;

Herrmann et al., 2007 (NIRS)

Amygdala – Visual cortex connections Amaral et al., 2003; Baizer et al., 1993;

Freese and Amaral, 2005, 2006

Amygdala – orbitofrontal cortex 

connections

Barbas, 2007

Amygdala feedback connections Amaral and Price, 1984

Brain responses to emotional words Keil et al., 2006



59 

 

Chapter 3: 

OPTIMIZATION OF SSVEP BRAIN RESPONSES

USING SMALL CHECKERBOARD STIMULI

This chapter describes the experimental design and results from a series of 

experiments with the main goal to investigate objectively the properties of the brain response 

to steady-state visual stimulation with very small neutral stimuli (Bakardjian et al., 2010). 

The term ‘neutral’ is used here in the sense that the presented stimuli did not have an 

emotional or cognitive content, but aimed instead to reveal the characteristics of the visual 

sensory processing when a rapidly reversing/flickering pattern was observed by a human 

subject.  

3.1. Objectives – SSVEP Using Small Stimuli 

One of the main objectives (1) of the first study in this chapter was to evaluate the 

possibility of extracting reliably the brain responses to very small visual patterns in view of 

subsequent application for BCI. Although using small patterns may result in weaker visual 

responses (due to lower signal-to-noise ratios), a substantial advantage is that visual 

occlusion is minimized and screen estate can be made available for other purposes in 

practical applications.  
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It is known that SSVEP stimuli with different shapes and sizes result in varying brain 

responses (Regan, 1966). Constructing a basic frequency response curve for very small 

checkerboard SSVEP stimuli is another important objective (2) addressed in this chapter. The 

optimal selection of SSVEP stimulation frequencies based on objectively measured EEG data 

is essential for reaching maximal information transfer rates in a BCI design. 

A further goal (3) is to understand the time dynamics of the SSVEP response to small 

stimuli as used for BCI. As SSVEP-BCI commands require a few seconds to be recognized, it 

is important to understand to what extent these time delays are due to inherent SSVEP signal-

to-noise limitations (baseline brain activity versus post-onset SSVEP activity), even if the 

online signal processing algorithms are relatively fast. 

And finally (4) , it is essential to address the question if it is feasible to record SSVEP 

from brain areas other than the visual occipital cortex. In practical BCI applications it would 

be highly advantageous to avoid application of wet electro-gel between the EEG electrodes 

and the skin of the head. Dry electrodes could be easily applied on the forehead, or behind the 

ears using correspondingly head caps / headbands or glass frames. This possibility requires 

the investigation of the differences between SSVEP responses in pre-frontal and temporal, as 

compared to occipital locations on the head. 

3.2. Methods 

3.2.1. Experimental Subjects 

Four healthy subjects participated in both studies. The average age of the group was 

38.2 ± 2.4 years. All subjects had normal or corrected-to-normal vision. The participants 

were fully informed of the procedures in advance. In preparation for the experiments, each 
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subject was screened for history of epilepsy and photosensitivity, and signed an informed 

consent form including a statement that she/he had no known neurological disorders. In 

addition, before each experiment the subjects were shown a brief stimulus sequence with 

increasing frequency in order to test for photosensitive epilepsy and to further decrease the 

probability of seizure.  

3.2.2. EEG Data Acquisition – EEG system 

Brain signal acquisition was performed using a BIOSEMI EEG system with sintered 

Ag/AgCl active electrodes. Active electrodes contain miniature electronics to allow 

substantially higher EEG signal-to-noise ratio and better sensitivity to weak brain signals. 

Two additional electrodes, the passive Driven Right Leg (DRL) electrode, and the active 

Common Mode Sense (CMS) electrode (Metting van Rijn et al., 1994), both located just 

posterior to the vertex, were used to determine the common mode voltage of the Biosemi 

EEG system against which all other electrode measurements were recorded. This active-

electrode arrangement replaced the traditional reference electrode(s) used by previous passive 

EEG systems. 

In this study investigating SSVEP characteristics and optimization, the experiments 

were performed with a 128-channel whole-head configuration, using the highest available 

sampling rate of 2048 Hz. A chin rest was used by all subjects to prevent excessive 

contamination of the EEG data with EMG artifacts due to upper body muscle movements. 
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3.2.3. SSVEP Stimuli and Display 

Subjects were seated 0.9m from a 21” CRT computer display operated at a high 

vertical refresh rate (setting 170 Hz, measured – 168 ± 0.4 Hz Hz). 

SSVEP stimulation was achieved using small reversing black and white 

checkerboards with 6 x 6 checks. Each check was 0.3° arc in size so that the diameter of the 

pattern was 2.5° arc which is slightly larger than the approximate size of the fovea. The 

stimulus luminance was 12.5 cd/m
2
 for the white checks, and 0.05 cd/m

2
 for the black ones 

(Michelson contrast of 99.2 %). Each pattern included a small red fixation point in its center 

and subjects were instructed to position their gaze on that point. 

The actual light stimulation which was emitted by the display and reached the eyes 

was verified using a small photosensitive semiconductor sensor. Fig. 4 shows the time course 

of the light emitted by the CRT display during a single pattern reversal cycle (8.4 Hz). The 

peaks mark the time points when the image under the sensor was refreshed by the display to 

show a white check. 

Since the visual stimuli reversed on screen with a relatively high frequency, the 

stimulus control module needed to ensure that they were shown properly (completely) on any 

programmable visual display which was using discrete refresh rates (CRT, LED, LCD or any 

other display based on refresh cycles). That is why it was essential that the oscillations of the 

stimuli were precisely synchronized with the start of each display refresh cycle. This 

requirement imposed some limitations on the possible SSVEP frequencies, because each 

stimulus state was calculated to be shown for an integer number of display cycles, to avoid 

improper partial display. A higher display refresh rate of the display allowed a larger number 

of frequencies/commands. 
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Fig. 4. Time course of the actual light emitted by a CRT display during checkerboard reversal 

(8.4 Hz). The peaks mark the time points when the image under the photosensor was 

refreshed by the display every 5.8 ms to show a white check. Note: compare to LCD display 

stimulation in Fig. 24. 

3.2.4. Data Pre-processing - Artifact Rejection Using ICA/BSS 

After re-referencing the original EEG data to the central CZ electrode, independent 

component analysis (ICA) / blind source separation (BSS) was used to remove eye blink and 

other artifacts (see Appendix A for more details). In general, ICA/BSS represents the input 

array X as a linear superposition of the component vectors S, assuming the following model: 
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(a)

(b) 

Fig. 5. Negative impact of ocular artifacts on the SSVEP signal. If left unhandled, artifacts 

can have a distinct negative impact on the SSVEP in spite of its narrow-band nature. Eye 

blinks can cause false positive identification of commands in SSVEP-based BCI due to signal 

transients of non-cortical origin. After proper application of ICA/BSS such disruptive 

artifacts are removed almost entirely. (a) raw EEG response with multiple eye blink artifacts; 

(b) The SSVEP narrow-band response masked substantially by the much stronger 

overlapping ocular artifacts. A two-second resting baseline is included in this figure before 

the stimulus onset. 



65 

 

( ) ( )x k A s k= ×       (1)

where x(k) = [x1(k), . . . xQ(k)]T are the Q observed sensor signals at each time point k, s(k) 

= [s1(k), . . . sN(k)]T is a vector of N unknown sources (components) within the sensor space, 

and A is a non-singular unknown mixing matrix with size Q × N.

Here, a modified Robust Second Order Blind Identification with Joint Approximate 

Diagonalization (SOBI) procedure followed by automatic Hoyer sparsity ranking of the 

components were applied in order to extract and remove eye blink and muscle artifacts 

(Cichocki and Amari, 2003). Top-ranking sources with the highest sparsity and low-

frequency dominance were identified as eye-blink or eye-movement artifacts. These 

components were removed automatically and the remaining data was reconstructed back to 

EEG space. Even though this method achieved good results, the reconstructed data was 

verified further by EEG mapping to ensure that there are no remaining identifiable artifacts.  

3.2.5. Methods - The SSVEP Frequency Response of the Brain 

The visual cortex, although highly robust, does not need to respond in the same way 

to all stimulation frequencies. In order to uncover the specific frequency relationships for the 

small patterned stimuli, a single reversing 1.8°x 1.8° checkerboard was presented on a black 

background in the middle of the screen, in an arrangement designed to minimize competing 

stimuli, and to enhance attention. 

The rate of reversal of the pattern was changed every 6 s and increased stepwise, with 

larger steps at higher stimulation frequencies due to the limitations imposed by the discrete 

refresh cycle of the computer display (Bakardjian et al., 2007a; Bakardjian et al., 2010). 

Overall, 32 reversal frequencies were shown: 5.1, 5.25, 5.4, 5.6, 5.8, 6.0, 6.2, 6.5, 6.7, 7.0, 

7.3, 7.6, 8.0, 8.4, 8.85, 9.3, 9.9, 10.5, 11.2, 12.0, 12.9, 14.0, 15.3, 16.8, 18.7, 21.0, 24.0, 28.0, 
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33.6, 42.0, 56.0, 84.0 Hz. Due to the discrete vertical refresh rate of the computer monitor 

and to avoid improper partial display, these frequencies were obtained by dividing the 

measured refresh rate of 168 Hz by integer values (33, 32, …, 2). In that way, the maximal 

stimulation frequency was at the limit of half the display refresh rate (using one refresh frame 

for the white check and one frame for the black one).  

Each frequency response was recorded for 6 seconds before switching to the next 

higher frequency without a pause, which emulated conditions during user command changes 

in a BCI system.  

After ICA/BSS pre-processing (see Appendix A), the artifact-free responses from the 

6-second windows for each stimulation frequency were separated and band-passed using a 

zero-phase finite impulse response (FIR) filter configured for a 0-dB magnitude response at 

the center frequency of the passband.. Each of the 32 frequency bands was centered at its 

corresponding pattern reversal rate and its width was set to ±0.1 Hz.

The response strengths for each band and subject were estimated as the mean z-score 

of the band power throughout the stimulation interval. The average z-score across all subjects 

was calculated for each pattern reversal rate as a measure of the frequency response of the 

brain. 

3.2.6. Methods - The Time Dynamics of the SSVEP Response 

In this experimental setup, a single small reversing checkerboard was displayed in the 

middle of a black screen, similarly to the previous experiment. Three separate reversal 

frequencies were used sequentially (8 Hz, 14 Hz and 28 Hz) in order to cover different 

components in the brain frequency response (Regan, 1977). Six trial repetitions were used for 
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each frequency. Each trial consisted of 5 s baseline rest (black screen) and 15 s stimulation 

(Bakardjian et al., 2007a; Bakardjian et al., 2010). 

Processing of the EEG data involved steps similar to those described for the previous 

experiment, including artifact removal by ICA/BSS and band-pass filtering of the single-trial 

responses. However, for this experiment, the detailed dynamics of the single-trial SSVEP 

onset responses was of interest, instead of measuring the SSVEP strength. To remove the 

interference caused by the synchronous SSVEP response oscillations, and to observe their 

envelope, a demodulation procedure was applied (Müller and Hillyard, 2000). Demodulation 

has been used successfully in the past for envelope analysis of oscillating EEG waves 

(Walter, 1968). Here, a modified quadrature amplitude demodulation (QAD) method was 

used to recover the amplitudes of phase-shifted messages Y1 and Y2 in a modulated carrier 

input signal X (SSVEP) 

1 cos(2 )Y X ftp= , 2 sin(2 )Y X ftp=    (2) 

and reconstructed the original modulating signal using the following equation: 

1 2( ) ( ) ,
f f

Z Y YH H= +
   

  (3) 

where f is the counterphase modulation frequency, and
f

H  is a low-pass Butterworth filter at 

cutoff frequency f applied to filter out the carrier signal. The QAD model output Z

represented the recovered single-trial SSVEP response envelope, which could be used further 

to measure the characteristics of the signal dynamics (Fig. 6). 
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Fig. 6. Single-trial SSVEP response to 14-Hz pattern stimulation. 

(top) narrow band-passed SSVEP response, where the lines show the onset and offset of the 

stimulation; (bottom) normalized quadrature amplitude demodulation (QAD) envelope of the 

signal showing the dynamics of the response for this frequency. 

3.2.7. Statistical Evaluations 

The demodulated, squared and normalized SSVEP brain responses in the time 

dynamics study were used to calculate peak analysis measures for SSVEP onsets and first 

peaks. The SSVEP measures were evaluated for statistical significance for each frequency, 

trial and subject. The SSVEP onset was defined as the envelope value on a rising slope for 
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which the baseline oscillation maximum was exceeded by 10%. The first peak was defined as 

the first extremum of the signal following the onset point. All single-trial latencies for the 

SSVEP onset and first-peak delays were measured and evaluated through two-factor 

statistical analysis of variance (ANOVA). Data series were considered significantly different 

if the probability that they do not belong to the same sample populations was above the 95% 

threshold (p < 0.05). 

3.3. Results 

3.3.1. SSVEP Frequency Response of the Brain 

In spite of using the adaptive modeling method and spectrum normalization, it is 

important for the BCI system accuracy to ensure sufficiently high signal-to-noise ratios 

(SNR). For an SSVEP-based BCI this means that the frequency bands for all commands need 

to be preselected within a spectral range featuring optimal brain sensitivity.  

Fig. 7 a shows the occipital SSVEP frequency dependency results for all subjects in 

the entire stimulation frequency range 5.1 – 84 Hz, while Fig. 7 b presents in more detail the 

lower half of the SSVEP frequency response range 5.1 – 33.6 Hz. SSVEP frequency region 

definitions were adopted and extended from Regan (Regan, 1977) as follows: Low-

Frequency (LF: 5-13 Hz), Medium-Frequency (MF: 13-30 Hz), High-Frequency (HF: 30-60 

Hz), and Very-High-Frequency (VHF: >60 Hz). 
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(a) 

(b) 

Fig. 7. Frequency response curve of the occipital brain for small-checkerboard SSVEP 

stimuli. Stimulation for each of the 32 frequencies was maintained for 6 seconds, and the z-

score of mean power throughout the stimulation interval was used for this representation. (a) 

entire measured stimulation frequency range 5.1 – 84 Hz; (b) zoom of the low- and medium-

frequency responses for 5.1 – 33.6 Hz.  The mean z-scores exceeded 0.5 in the 5.6 – 15.3 Hz 

frequency range, and the strongest response was observed at 12 Hz. Here, the SSVEP 

frequency region definitions by Regan (Regan, 1977) were partially adopted and extended: 

Low-Frequency (LF: 5-13 Hz), Medium-Frequency (MF: 13-30 Hz), High-Frequency (HF: 

30-60 Hz), Very-High-Frequency (VHF: >60 Hz) 



71 

 

Table 9 lists the frequencies and strengths of the main identified peak responses in the 

occipital area of the brain. The obtained frequency characteristics indicated that during 

SSVEP stimulation with small neutral checkerboards the strongest response peaked around 

12Hz. In addition, LF response peaks at 5.6 Hz and around 8 Hz (7.6-8.8 Hz) were also 

observed. In the MF range, the strongest response was detected at 15.3 Hz, while a much 

weaker peak was observed for 28 Hz stimulation. The HF region presented a small local 

enhancement at 42 Hz, while the VHF was characterized by a linear inverse relationship 

between frequency and brain responses up to the highest tested frequency of 84 Hz. Also, the 

highest inter-subject variability was observed at 5.6 Hz and 9.9 Hz (which overlaps with the 

occipital alpha band). 

According to these results, and assuming a z-score threshold value of 0.5, it is 

proposed that the peak responses to SSVEP stimulation in the range 5.6 – 15.3 Hz are optimal 

for use in applications such as multi-command SSVEP-based BCI systems. 
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Table 9. Main peak-response frequencies and z-scores to SSVEP stimulation. The strongest 

responses were observed for 12Hz. The mean z-scores of all subjects in the range 5.6 – 15.3 

Hz exceeded 0.5. 

3.3. 2. Time Dynamics of the SSVEP Response - SSVEP Onset- and 1st Peak 

Delays 

In addition to obtaining the most efficient stimulation frequencies, it is also essential 

to look at the detailed time dynamics of the SSVEP responses to small checkerboards. 

Obtaining data on the response onset and stability is especially relevant in the context of BCI,

as it would allow a general estimation of the inherent limits in the speed of information 

transfer using this technology. 

The mean SSVEP responses for the three selected frequencies in this experiment (Fig. 

8) indicated that in spite of their common periodic characteristics there may be differences in 

the underlying processes. The lowest frequency exhibited additional visual response waves 

overlaid on the main oscillation of 8 Hz (125 ms), while the waveform of the highest reversal 

rate demonstrated intermittent resetting of the main 28 Hz (~36 ms) response by the next 

stimulus. 

L1 (LF) L2 (LF) L3 (LF) M1 (MF) M2 (MF) H1 (HF)

Peak Freq. 5.6 Hz 8.0 Hz* 12.0 Hz 15.3 Hz 28.0 Hz 42.0 Hz

Z-Score 0.58 0.82* 1.22 0.66 -0.88 -1.19
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Fig. 8. Averaged 5-cycle waveforms for the 8 Hz, 14 Hz and 28 Hz SSVEP brain responses 

(small checkerboards). The 8 Hz oscillations exhibited additional waves overlaid on the main 

frequency response. With their shortest durations (~36 ms), the 28 Hz response cycles 

showed increased signs of possible intermittent resetting by the next stimulus. 

However, the main goal of this experiment was the single-trial analysis of the SSVEP 

dynamics (see Fig. 6 for an example). For all subjects, highly non-stationary single-trial 

SSVEP responses were observed, which featured distinct peaks and valleys during the 15 s 

stimulation depending on frequency. For the purpose of this study, mainly the oscillation 

onset and the 1
st
 peak were investigated, although in most cases the maxima of the observed 

responses followed later, delayed by several seconds. Among the 8Hz, 14Hz and 28 Hz 

responses studied in detail, the14Hz activity evoked the strongest and most global brain 

response.  

Investigating the 8 Hz, 14 Hz and 28 Hz SSVEP dynamics, both the occipital SSVEP 

onset- and 1
st
-peak delays both showed statistically significant dependency on the stimulation 

frequency (Fig. 9), p=0.00001 for onsets, and p=0.002 for first peaks). Depending on 

frequency, the SSVEP responses were highly non-stationary in all 15-s trials. In most trials, 

the 14 Hz onset and 1
st
-peak were the fastest among the three measured frequencies, with the 
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strongest, most stationary, and most global brain response. The 28 Hz activity onset and 1
st

–

peak were the slowest and the oscillations most non-stationary. Statistical testing did not 

show significant inter-trial differences among all available trials (p=0.85 for onsets, and 

p=0.94 for first peaks). There was, however, frequency-dependent variability between 

individual subject responses, as also pointed out in other studies (Joost and Bach, 1990). The 

inter-subject variability almost reached significance (p=0.07) for the onset delay 

measurements, but was not significant for the first peaks (p=0.29).  
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Table 10. SSVEP onset- and first-peak delays of the brain response for three frequencies in 

the low-, medium- and high-frequency range. 

Fig. 9. SSVEP response delays for 8 Hz, 14 Hz, and 28 Hz stimulation with small patterns for 

SSVEP onsets (solid line) and SSVEP 1
st
 peaks. The SSVEP onset is defined as exceeding 

the baseline by 10% and the 1
st
 peak is the local maximum following the onset. The 14 Hz 

responses were fastest for both the onset- and the 1
st
 peak delays, while the high-frequency 28 

Hz activity was the slowest to elicit a measurable SSVEP response when using band estimate 

measures. 

8 Hz 14 Hz 28 Hz

ONSETS

0.79 s 0.71 s 1.74 s

1.PEAKS

2.04 s 1.52 s 2.46 s
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Fig. 10. Topographic patterns of activation at the first peak of the 14Hz SSVEP envelope (a 

single-trial example). 

3.3. 3. Effects of Sensor Locations on SSVEP Properties 

Although the main cortical SSVEP activation occurs in the occipital visual cortex, 

there is evidence of more lateral sources in the extrastriate visual cortex (Di Russo et al., 

2007; Watanabe et al., 2002), as well as of sources in the frontal cortex (Srinivasan et al., 

2007). The SSVEP responses in this study exhibited a clear dependency on the stimulation 

frequency and measurement location. Fig. 11 - Fig. 13 below show the SSVEP response-

envelopes recovered using QAD, and demonstrate that the SSVEP responses (14 Hz here)

decline in quality with increasing distance from the occipital cortex. Left parieto-temporal 

(middle) and frontal (bottom) responses are more inconsistent than occipital SSVEP (top).

This explains also why the BCI performance reported in the next Chapter 4 declined over the 

left parieto-temporal cortex (LPTC) and the frontal cortex (FC), and substantiates the need 

for fast adaptive SSVEP extraction algorithms. 
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Fig. 11. Dynamics of single-trial responses at an optimal occipital location for 14 Hz 

stimulation and all 6 trials (single subject). Although SSVEP responses are also measurable at 

parieto-temporal (see Fig. 12) and frontal (see Fig. 13) locations, they become more transient 

with increasing distance from the occipital cortex. 
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Fig. 12. Dynamics of single-trial responses at a left parieto-temporal location for 14 Hz 

stimulation and all 6 trials (single subject). 

Fig. 13. Dynamics of single-trial responses at a frontal location for 14 Hz stimulation and all 

6 trials (single subject). The responses were most transient among all 3 tested electrode 

locations. 
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3.3.4. Time-Frequency, Area, and Cross-Cumulant Measures for SSVEP 

Evaluation 

Further, the SSVEP response-envelopes were subjected to three types of processing: 

a) Time-frequency decomposition (using a Morlet wavelet basis) 

b) Area analysis of the single-trial responses 

c) Cross-cumulant measures for inter-trial reproducibility analysis. 

Wavelet-based time-frequency decomposition of single-trial SSVEP was able to 

expose the relatively consistent brain oscillations corresponding to the external visual stimuli 

(Fig. 14). However, this technique also confirmed the hypothesis that the nature of the

SSVEP brain response, as represented by the oscillation envelope, is highly non-stationary 

over time. This may call for an update of the original SSVEP definition by Regan stating that 

the steady-state evoked potentials are “a repetitive response whose constituent discrete 

frequency components remain constant in amplitude and phase over an infinitely long time 

period” (Regan, 2008). 

Response area analysis (Fig. 15 a), in which the area under the brain response 

envelope was measured and compared between experimental conditions, confirmed that the 

occipital sensor location was optimal, and that a stimulation of 14 Hz evoked stronger 

responses than 8 Hz and 28 Hz. Notably, frontal responses were most sensitive to high-

frequency stimulation (28 Hz), in agreement with reports from other studies showing that the 

frontal cortex SSVEP activation is more frequency-dependent (Srinivasan et al., 2007). 



80 

 

Fig. 14. Wavelet-based time-frequency decomposition of non-stationary single-trial SSVEP 

(15-sec duration) for 14 Hz stimulation. (top) occipital cortex location; (middle) left parieto-

temporal location; (bottom) frontal location. SSVEP responses decline in strength and 

consistency at parieto-temporal and frontal locations with increasing distance from the 

occipital cortex. 
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To reveal the level of consistency of the non-stationary SSVEP responses over several 

repetitions, using varying frequencies and locations, inter-trial reproducibility analysis based 

on cross-cumulant measures (Georgiev et al., 2006) was also applied. Cross-cumulants are 

useful for evaluating nongaussian signals corrupted by additive Gaussian noise, although 

higher order cumulants require longer data samples for proper estimation. Here, fourth-order 

cross-cumulants were used, corresponding to the normalized version of the crosscorrelation 

of energy, to compare signals from selected locations (channels) and frequencies for each 

unique trial pair.  

For two zero-mean signals ( )x t  and ( ), 1,...,y t t T= , the cross-cumulant is defined as: 

( ( ), ( ), ( ), ( ))Cum x t y t x t y tt t- - =                  (4) 

{ ( ) ( ) ( ) ( )}E x t y t x t y tt t- - { ( ) ( )} { ( ) ( )}E x t y t E x t y tt t- - -

{ ( ) ( )} { ( ) ( )}E x t x t E y t y tt t- - - { ( ) ( )} { ( ) ( )}E x t y t E y t x tt t- - - ,

where t  is a lag constant, and E  is the mathematical expectation of the signal. 

The mean cross-cumulant values between trial pairs in each location and for each 

frequency showed (Fig. 15 b) that occipital sensor locations ensured the highest inter-trial 

reproducibility, as well as that repeated 14 Hz responses were most reproducible. The non-

stationary SSVEP activity envelope was more transient and the shape of the responses was 

less predictable with repetition at the suboptimal parieto-temporal and frontal sensor 

locations for all studied stimulation frequencies.  
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(a) 

(b) 

Fig. 15. Properties of SSVEP responses at occipital (black), left parieto-temporal (gray) and 

frontal (white) sensor locations measured for 8 Hz, 14 Hz, and 28 Hz stimulation with small 

reversing checkerboards on a black background. (a) Response-area analysis; (b) Inter-trial 

reproducibility analysis using cross-cumulant measures. 
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Chapter 4: 

ONLINE MULTI-COMMAND SSVEP-BASED BCI

USING SMALL CHECKERBOARD STIMULI

Following the investigation of the basic properties of the SSVEP brain response in the 

previous chapter, the research described here aimed to optimize the paradigm and to evaluate 

objectively a novel online SSVEP-BCI system with eight independent commands using rapidly 

moving and reversing/very small checkerboards (Bakardjian et al., 2010).  

4.1. Objectives - SSVEP-Based BCI 

The main research objective in this chapter was to develop a robust online BCI system 

with very high information transfer rates, and novel design features. This included the 

following goals:  

1) Reliable extraction of multiple (eight) independent BCI commands using the small 

SSVEP patterns which were investigated in detail in the first study 

2) Using all SSVEP patterns in close proximity to each other to reduce visual 

occlusion without brain response degradation 

3) Using successfully dynamically-moving SSVEP stimuli for the first time in an 

online BCI system in order to enable near-real-time control of a screen object 
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4) Achieving the highest possible BCI success rates and the lowest possible delay 

times for most SSVEP frequencies and users. 

4.2. Methods 

4.2.1. Experimental Subjects 

The same four healthy subjects participated in these online BCI experiments as in the 

previous chapter. Again, all participants were fully informed of the procedures in advance 

and written consent was obtained. Each subject performed a short test run (~30 s) to practice 

rapid switching between the SSVEP command patterns on the computer screen.  

4.2.2. Basic Structure of the Multi-command SSVEP-Based BCI 

The multi-command online SSVEP-based BCI system consisted of the following 

modules: 

1) EEG data acquisition module 

1.1) EEG system 

1.2) Data transfer over network 

1.3) Online data reception and configuration unit 

2) User interface module 

2.1) Multi-pattern SSVEP stimulation unit 

  (frame-by-frame flicker control) 
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2.2) Neurofeedback unit (control of executive device) 

3) Analysis module 

3.1) EEG pre-processing unit 

3.2) Feature extraction unit 

3.3) Command recognition/classification unit 

3.4) Command output unit 

4.2.3. EEG Data Collection – SSVEP-BCI

In the SSVEP-BCI experiments, the BIOSEMI EEG system with sintered Ag/AgCl 

active electrodes was used again, as described already in the previous chapter. 

For the online BCI study, brain signal acquisition was performed with the BIOSEMI 

EEG system using 6 active electrodes. The main electrode configuration was occipital, 

however, two other configurations were also tested, parieto-temporal and frontal, as shown in 

Fig. 16. In the occipital configuration, one of the electrodes was placed in an anterior location 

(FZ) to aid the automatic detection and removal of eye-related artifacts. The data was 

acquired at a sampling rate of 256 Hz. Two additional electrodes, the passive driven right leg 

(DRL) electrode, and the active common mode sense (CMS) electrode, were fixed in a 

standard position just posterior to the vertex, and determined the common mode voltage of 

the Biosemi EEG system against which all other electrode measurements were recorded. 
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  (a)    (b)        (c)

          (d)       (e)

Fig. 16. Active electrode locations used in the SSVEP-based BCI design. (a) and (d) optimal 

occipital layout with 6 sensors (5 occipital and 1 prefrontal); (b) bilateral parieto-temporal 

electrode setup with 6 sensors; (c) and (e) frontal (forehead) electrode setup with 6 sensors 

The online BCI analysis module was designed to utilize EEG data both from the 

BIOSEMI and the NEUROSCAN EEG systems as their corresponding EEG acquisition 

modules sent their real-time data over a TCP/IP network to the BCI system. 
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BCI experiments were performed in an unshielded environment, corresponding to a

most realistic scenario for using a BCI system. The subjects were free to move (while 

maintaining attention to the task), and no chin rest was used. 

4.2.4. BCI-SSVEP Stimulation and Real-Time Neurofeedback Module 

The SSVEP stimulus characteristics for the multi-command online BCI system were 

either the same or derived from the SSVEP optimization study.  

Figs. 17 and 18 show the user neurofeedback and stimulation designs as displayed to 

the user. The purpose of the stimulation and neurofeedback module was to enhance BCI 

control and to evoke optimal brain responses depending on user’s intent and selective 

attention. To make the design most useful, non-intrusive, and to minimize fatigue, the 

following requirements were imposed: 

1) The SSVEP stimulus size should be minimized 

2) The stimuli should be grouped tightly together in order to reduce the covered areas 

of the visual field as much as possible (enabling a wider range of BCI applications), and to 

minimize user fatigue 

3) The stimulation frequencies should be restricted to the optimal-response range of 

the brain (ensuring higher performance across subjects) 

4) The SSVEP stimuli should evoke strong brain responses even during stimulus 

movement (used for neurofeedback) 

5) The overall design should be easily extendable to more commands. 

Eight small checkerboard patterns were displayed simultaneously, each allowing 

control of an independent BCI command. The patterns were fixed very close to a moving 

controllable object, and allowed its spatial translation in 8 directions with 45° resolution in 2-
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D space (Fig. 17 a). The pattern reversal frequencies were 6.0, 7.3, 8.4, 11.2, 12.9, 14, 15.3, 

16.8 Hz. This frequency range was found to be optimal for these stimuli in the experiments 

described in Chapter 3. As the subject directed the attention to a particular pattern, the 

synchronized brain responses were identified by the BCI system and online visual 

neurofeedback allowed the movement of the controlled object in the desired direction (UP, 

RIGHT, DOWN, LEFT, UPPER-LEFT, UPPER-RIGHT, LOWER-RIGHT, LOWER-

LEFT). 

Information about the currently recognized neural command was continuously 

transferred back to the user interface station and, corresponding to each command, the visual 

neurofeedback system indicated online the results of the automatic interpretation of the user 

intent. Spatial position changes in two-dimensional space were calculated by the 

neurofeedback module for every screen refresh cycle, and the controlled object (a small car in 

this case) moved in the desired direction (limited by the number of directions/ commands). 

The stimulus control subsystem of the user interface accepted commands every 120ms, and 

tested all incoming commands for proper syntax before each position update. In case of any 

mismatch, an idle state would be imposed (no command), otherwise the command was 

carried on. A separate byte in the incoming command data indicated the strength of the 

command probability. This allowed the stimulus control algorithm to change the power of the 

executed command (e.g. change the speed of the car object moving on screen). In that way, 

stronger SSVEP brain responses evoked more powerful command neurofeedback. 
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(a)                                                       (b) 

(c)                                                       (d) 

Fig. 17. SSVEP-based BCI designs with multiple independent commands. The stimulation 

patterns are fixed closely to a moving controllable object, so that directing the user’s attention 

to a selected pattern enables 2D navigation in that direction. (a) a racing car design with 8 

directions of movement; (b) bouncing ball design with a less distracting neutral black 

background and 8 directions of movement; (c) a racing car design with 4 directions of 

movement and 4 additional commands (speed up, speed down, stop, and horn); (d) a static 

phone design with 12 commands and very small stimulation patterns, for which a command 

is accepted after a short fixed period of consistent command recognition (e.g. the number 4). 
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Fig. 18. An experimental subject during evaluation of the multi-command SSVEP-based BCI 

system with moving stimulation design (Bakardjian et al., 2010; Bakardjian et al., 2007a; 

Martinez et al., 2007) 
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4.2.5. Online BCI Data Analysis Module (Workflow) 

The online data analysis module of the system was based on a multi-stage frequency 

band classification approach (Bakardjian et al., 2010; Martinez et al., 2007) with the 

following workflow (Fig. 19):

1) Automatic artifact rejection based on ICA/BSS for removal of eye- and muscle 

movement artifacts     (EEG pre-processing unit) 

2) Bank of narrow band-pass filters  (Feature extraction unit) 

3) Variance analyzer    (Feature extraction unit) 

4) Smoothing filter   (Feature extraction unit) 

5) Channel Integrator    (Feature extraction unit) 

6) Individual band normalization  (Feature extraction unit) 

7) Command classification   (Command recognition unit) 

8) Command output    (Command output unit) . 

Before the data was supplied to the analysis module, and as the multichannel 

biosignals were initially received from the EEG device via a TCP/IP connection, the online 

data reception and configuration unit continuously applied a fast high-pass infinite impulse 

response (IIR) filter with a cutoff frequency of 2 Hz. This measure was necessary in order to 

remove the substantial baseline shifts due to the DC coupling features and the wide dynamic 

range (24-bit) of the Biosemi EEG amplifiers. 
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Fig. 19. Block diagram of all modules of the online 8-command BCI system. 
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  (a)    (b)    (c)

Fig. 20. Online ICA/BSS-based artifact removal. The automatic rejection of eye blink and 

muscle artifacts was performed by using independent component analysis (ICA) / blind 

source separation (BSS). The second-order AMUSE algorithm was used to extract and rank 

the EEG components continuously within a 3-sec sliding window. The first and last 

components were removed and data was reconstructed for further processing. (a) EEG input 

data; (b) ranked ICA/BSS components; (c) artifact-free EEG output data. 

1) In the first stage of the online analysis module, a fast second-order ICA/BSS 

algorithm, a modified fast AMUSE procedure (Cichocki and Amari, 2003) was applied for 

online artifact removal. An ICA/BSS pre-processing procedure serves to increase the success 

rate of the system by reducing the probability for false positive recognition of BCI 

commands. A practical real-time BCI system needs to remove properly user eye blinks and 
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other contaminating artifacts, while ensuring an uninterrupted data flow for continuous 

classification. That is why simple threshold rejection is not an appropriate approach. The 

online ICA/BSS procedure used in the SSVEP-BCI design was able to identify and remove 

the eye blink artifacts adaptively and efficiently (Fig. 20, see Appendix A for more details on 

ICA/BSS and the AMUSE algorithm).  

The AMUSE algorithm ranked the EEG components automatically, so that the 

undesired first and last components corresponding to artifacts were canceled, and the 

remaining components were projected back to EEG space. The first components extracted the 

slowest brain activity, which in the case of fast SSVEP stimulation was due only to eye 

blinks, eye movements, or other slow artifacts. The last component contained the fastest 

activity, which had either muscle artifact origin, or was due to other high-frequency noise. In 

that way, the ICA/BSS pre-processing procedure removed any possibility that the BCI 

control was contaminated or due to eye / muscle activity instead of SSVEP responses. 

2) The artifact-free EEG data was routed to a bank of elliptic narrow-band IIR filters 

( )EEGH X ¢  of 3
rd

 order with center frequencies corresponding to the reversal rates of the 

command patterns and a bandwidth of 0.2 Hz (Fig. 21). An essential property of this filter 

bank was to ensure a minimal power overlap between adjacent frequency bands.  

3) A variance analyzer calculated the variance of the band-power signals 

( ( ))EEGE V H X ¢=  for all pattern reversal frequencies and all EEG channels. 
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Fig. 21. Block diagram of the SSVEP-BCI online analysis module. A BCI command 

estimation is performed every 120ms. 

4) The variance served as input for the next feature extraction step, a smoothing 

Savitzky-Golay (SG) filter using 2
nd

-order polynomial smoothing (Savitzky and Golay, 

1964). The SG filter preserves important time-domain features, such as the signal extrema 

and high-frequency content. It approximates the signal with less distortion than other 

smoothing methods such as a moving average. The SG method uses a minimization of the 

least-square error by fitting a polynomial of order L to the noisy data X, instead of fitting a 

constant value as in the moving average. For each time point n, let’s consider nL points 

before and nR points after n: 

[ ] [ ]
nR

n

k nL

y n c x n k
=-

= +å       (5) 
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Fig. 22. An online bank of Butterworth filters to extract SSVEP power for all 8 stimulation 

frequency bands and 6 EEG channels 

where the weighting coefficients cn for the polynomial A are: 
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Since the future data values are unknown, an online filter has nR = 0 to preserve 

causality. However, if 0 < nR << nL, then the smoothness would be improved in spite of the 

introduction of a small time delay. 

5) Following the smoothing procedure, a channel integrator is used to obtain the 

estimated energy per band, as the variance values are averaged between all Q channels 

6) An individual inter-band normalization for each of the P bands serves to improve 

the performance by reducing variability 

These procedures generate 8 time series describing the percentage of estimated 

normalized energy per band for each user: 
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where eij is the energy of channel i and band j. 

7) In the final analysis stages for online BCI, a linear discriminant analysis (LDA) 

classifier (Huberty, 1994) used the relative band energies Ej as input parameters to identify 

the user’s target of attention every 120 ms (about eight times per second) , although the 

calculations were performed for each data sample. The classifier assigned each BCI state to 

one of the P commands by maximizing the inter-class scatter while minimizing the intra-class 

scatter.  

8) The commands from the classification output were sent to the User interface 

module for immediate neurofeedback to the user (e.g. for fast movement of the controlled 

screen object and its surrounding SSVEP patterns). 
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4.2.6. Three Modes of Operation of the SSVEP-Based BCI System 

In the online BCI Experiments (design as shown in Fig. 17 a), three different modes 

of operation were enabled. For all modes of operation the user’s neural commands were 

detected and sent for visual feedback every 120 ms.  

1) Classifier training mode 

During the short classifier training mode (~2 min duration), each of the eight BCI 

commands was requested three times in random order, in addition to a no-stimulation 

command. After hearing a command request, the subject switched attention as soon as 

possible to the corresponding reversing pattern, or, in case of a no-stimulation request, to the 

controlled object between them. The voice requests were short pre-recorded messages asking 

the user to attend a specific pattern. Each command request was also accompanied by a thin 

red frame appearing around the requested pattern to minimize the searching delay. 

Neurofeedback was disabled during the training mode, and all user interface objects remained 

stationary.  

2) Performance evaluation with random command requests 

The second, evaluation mode served the purpose of measuring objectively the mean 

success rate and time delay of the BCI system. Six repetitions for each of the 8 commands 

were presented to the user in random order, after which the success rate was measured, as 

well as the recognition time delay. The dynamic neurofeedback was fully enabled in 

evaluation mode. A thin red frame aided the user to find the requested command pattern 

quickly, while a green frame showed which command was recognized. The time delay was 

measured as the difference in time between the end of a voice request for a specific command 

and its successful recognition by the analysis module.  

3) Self-paced free roaming 
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The free roaming mode was necessary in order to estimate the overall BCI speed and 

robustness during fast self-paced command switching under natural usage conditions. One 

useful measure for free-roaming BCI performance evaluation was found to be the time it 

takes for each user to complete a fixed number of laps, as the time was compared against the 

best achievement among all tested users. These time measures could be compared only if the 

parametric settings for the object’s (car’s) 2-D movement speed were fixed at an optimal 

value for all users. 

4.2.7. Computation of Information transfer rates (ITR) for Evaluation of the BCI 

Performance 

To evaluate and compare the presented BCI design to other systems, a bit transfer rate 

measure (Pierce, 1980) was used which was based on a modified definition by Wolpaw and 

colleagues (Wolpaw et al., 1998), called here the Wolpaw method (WM). The information 

transfer rate (ITR) conveyed how much information can be transferred between the human 

brain and the brain-computer interface per minute. The WM method takes into account the 

number of commands N, the success accuracy P (probability between 0 and 1), and the 

command delay T in seconds: 

2 2 2

1
log log (1 ) log

1

60

P
N P P P

N
B

T

-é ù+ + - ê ú-ë û=            (10) 

where B is the bit rate in bits/min.

Although to this date the Wolpaw method (WM) has been used in most BCI/BCI 

studies to present the BCI results in a standard form, recently it has been questioned and 

different bit-rate measures have been proposed (Kronegg et al., 2005; Furdea et al., 2009; 

Townsend et al., 2010). Nevertheless, the BCI performance in this study was presented using 
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the WM (Eq. 10) due to following two reasons: (a) a different definitions may interfere with 

the basis for comparison with previous studies; (b) the proposal for new measures was based 

on the rejection (Kronegg et al., 2005) of the 4 assumptions in the Wolpaw method, which 

may be appropriate in general, or in some special cases, but not necessarily so for some BCI

paradigms, such as the SSVEP-based system presented here.  

1) The argument against the first WM assumption that it doesn’t account for 

unrecognized commands can be answered by creating a separate ‘idle’ command, 

as was the case in the presented BCI system. Due to specific classification 

approach in the presented BCI system, no other outcome could occur apart from 

the N commands and the idle state (no command). 

2) The criticism of the second assumption that all commands have the same 

probability of occurrence was also invalid for the presented design, as in a general 

setting any of the N directions of the controlled object were equally probable in 2-

D space.  

3) The third WM assumption that the classification accuracy P was the same for all 

commands held approximately true within the peak frequency range, as uncovered 

in the results, and was also ensured by the individual spectrum normalization 

procedure. Further outside the optimal range of brain response frequencies, 

however, the probabilities may begin to differ in spite of the normalization.  

4) As for the fourth implicit assumption of the Wolpaw bit-rate formula that the error 

of classification 1-P is equally distributed among all commands, again the 

individual normalization strove to equalize the differences within the optimal 

frequency range, although additional compensatory measures may become 

necessary for higher frequencies. 
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5) The specifics of some BCI paradigms such as a P300-based speller may require 

special modifications of the information transfer rate (Furdea et al., 2009; 

Townsend et al., 2010) due to the necessity to erase first a wrong letter/syllable 

before replacing it with the proper command. Such corrections are not necessary 

in the presented BCI paradigm and as a result it would be wrong to bias the ITR 

estimate by using them. 

4.3. Results 

The online performance of the 8-command BCI system was measured in evaluation 

mode (request-response, see Methods) using patterns reversing in the optimal 6.0-16.8 Hz 

range as described above.  

In order to estimate the feasibility of using this type of BCI with more practical sensor 

sets, performance was evaluated separately with electrodes in three different locations 

(occipital, parieto-temporal and frontal) for each subject. The BCI performance results are 

shown in Table 11. As expected for visual responses, occipital brain locations were optimal, 

featuring the highest mean success rate (98 %) and the shortest mean time delay (3.4 s) 

necessary for the online analysis algorithm in this experiment to capture reliably the user’s 

intent. The more convenient parieto-temporal and frontal recordings were also found feasible 

for BCI control, however at the cost of substantially reduced performance. 
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Fig. 23. Running comparison of the extracted SSVEP band features for all 8 BCI commands 

in steps of 1/8 s. In this 30 s segment, the user responded to preprogrammed voice requests 

(performance evaluation mode) by attending consecutively the reversing pattern sequence 6-

8-7-3-2-1 ([upper-right] ® [lower-left] ® [lower-right] ® [down] ® [right] ® [up]). The 

frequency bands corresponding to these sequential commands were 14, 16.8, 15.3, 8.4, 7.3, 

6.0 Hz. In spite of differences in the frequency response curve of the brain, as demonstrated 

earlier, the individual normalization approach allowed direct comparison of all running BCI 

command features. 
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Table 11. Performance summary for SSVEP-based BCI with 8 commands, and 

comparison of the effects of electrode placement over three different brain locations –

occipital, left-parieto-temporal, and frontal (forehead). 

Electrode 

Location
OCCIPITAL

PARIETO-

TEMPORAL
FRONTAL

Success Rate 98 % 81 % 74 %

Time Delay 3.4 ± 0.7 sec 4.0 ± 1.2 sec 4.3 ± 1.5 sec

Bit Rate 

Measure
50 bits/min 26.5 bits/min 20.1 bits/min

TO-
FRONT
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Table 12. Individual performance of the SSVEP-based BCI system for each subject,

including the effects of electrode placement over 3 different brain locations. 

OCCIPITAL

SUCCESS RATES MEAN DELAYS STD OF DELAYS

Subject 1 100 % 3.63 sec 0.75 sec

Subject 2 98 % 3.27 sec 0.72 sec

Subject 3 95.5 % 3.35 sec 0.82 sec

Subject 4 100 % 3.92 sec 0.69 sec

Mean 98.38 % 3.54 sec 0.74 sec

PARIETO-TEMPORAL

SUCCESS RATES MEAN DELAYS STD OF DELAYS

Subject 1 82.75 % 3.98 sec 1.21 sec

Subject 2 83.25 % 4.02 sec 1.26 sec

Subject 3 76.75 % 3.92 sec 1.31 sec

Subject 4 80.75 % 3.96 sec 1.18 sec

Mean 80.88 % 3.97 sec 1.24 sec

FRONTAL

SUCCESS RATES MEAN DELAYS STD OF DELAYS

Subject 1 73.35 % 4.55 sec 1.56 sec

Subject 2 72 % 4.16 sec 1.35 sec

Subject 3 76.25 % 4.36 sec 1.52 sec

Subject 4 74.25 % 4.23 sec 1.46 sec

Mean 73.96 % 4.32 sec 1.47 sec
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Chapter 5: 

BRAIN RESPONSES TO FLICKERING 

EMOTIONAL FACE VIDEO

SSVEP STIMULI

This chapter describes the design and practical results from a series of experiments 

with the main goal to investigate the properties of the brain response to affective face video 

SSVEP stimuli, and to evaluate the hypothesis that such more complex stimuli could enhance 

the SSVEP response as compared to neutral patterns (Bakardjian et al., 2011). If the mutual 

modulation of sensory- and affective-face – related brain activations can be objectively 

measured and controlled, this phenomenon could increase substantially the scope of possible 

robust and practical BCI applications for healthy and disabled users.  

5.1. Objectives 

It is known that emotional arousal exerts a modulatory effect on sensory input, 

including vision through feedback mechanisms (Amaral et al., 2003), and that face stimuli 

enhance visual attention. Even though basic brain responses to visual flicker have been 

studied in the past, designing increasingly successful real-time BCI systems which offer 
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multiple commands and high reliability presents a crucial challenge for researchers. The main 

goal in such a task would be to achieve a breakthrough in the reliable, rapid estimation of the 

typically weak single-trial SSVEP oscillations buried in strong brain ‘noise’ (ongoing 

activities of the brain) by using better stimuli and better analysis techniques. 

The new approach and experimental results presented here aim to achieve that goal 

and to demonstrate that using emotional faces in short flickering affective videos as visual 

stimuli instead of the standard neutral checkerboards can enhance the basic cortical SVEP 

responses over a range of flicker frequencies as compared to neutral stimuli. 

5.2. Methods 

5.2.1. Experimental Subjects 

Eight healthy subjects (four male and four female), with an average age of 26 ± 9

years and normal or corrected-to-normal vision, participated in these experiments.  The 

subjects were fully informed of all procedures and signed an informed consent agreement, in 

accordance with the Declaration of Helsinki, and including a statement that they have no 

known neurological disorders. Before each experiment they were briefly tested for 

photosensitive epilepsy, and during the experimental sessions their EEG patterns were 

continuously monitored for epileptic spikes.

5.2.2. EEG Data Acquisition and Collection 

The brain signal acquisition in these experiments was performed using a BIOSEMI 

EEG system (Biosemi Inc, Amsterdam, The Netherlands) with sintered Ag/AgCl active 
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electrodes, as described in the previous chapter. EEG data was collected simultaneously from 

128 active electrodes in a whole-head layout, using a sampling rate of 512Hz for all 

experiments. 

5.2.3. Stimuli and Display - SSVEP Using Emotional-Face Video Stimuli 

The subjects were seated 1m from a 40” LCD display with a vertical refresh rate of 

60Hz (measured 59.7 ± 0.35Hz). Five different stimuli (Fig. 25) were shown to each subject:  

two short video clips (duration ~4s, dimensions 7°x 7°arc, frame rate 25 fps, no audio) with 

faces of actors depicting dynamically emotions of joy and anger on a white background 

(Baron-Cohen et al., 2004), as well as their block-blurred versions, and a reversing 6x6 

checkerboard. The subjects were asked to empathize with the observed emotional states as 

much as possible. 

Each video stimulus was shown at five flickering frequencies (5, 6.6, 8.5, 10, and 12 

Hz (see Fig. 24)), which are not discussed in detail in this work. The blank periods in the 

video SSVEP stimuli were replaced with 50% gray squares of the same size. Each video clip 

stimulus was replayed continuously until the end of the trial. Each trial was 10s long and was 

preceded by a 2s blank-screen baseline. 
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Fig. 24. Time course of the actual light emitted by a LCD display (60Hz vertical refresh rate) 

during checkerboard reversal of 12Hz. Measurement was performed using a photo-sensor and 

an oscilloscope. Unlike CRT displays (Fig. 4), the display vertical refresh does not result in 

separate illumination peaks, but the stimulation picks up gradually when the stimulus is on 

(right side). This illustrates also why LCD displays cannot be used properly for high-

frequency SSVEP stimulation (above ~25Hz) or for precise onset time delay measurements. 
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(a) 

(b) 

Fig. 25. Affective-face video SSVEP stimuli. (a) From left to right: two short video clips 

interrupted with gray flicker with faces of actors depicting emotions of joy/happiness and 

anger, the same videos blurred to preserve the general image properties but to conceal the 

emotions and facial features, and a neutral reversing checkerboard for control. (b) A block 

diagram illustrating the design of a 5 Hz video flicker stimulus, assuming 60 Hz screen 

refresh rate and 25 frames per second video frame rate. Each flicker cycle should span over 

an integer number of screen refresh frames in order to display the stimulus properly. For the 

flicker frequency in this example, 12 screen refresh frames / cycle were required, where the 

stimulus was displayed during half of the cycle (ON), and a blank 50% gray square image of 

the same size was shown during the other half (OFF). During each ON-period, a video frame 

was displayed for 2 screen refresh frames, which is the integer ratio of the screen refresh rate 

and the video frame rate. Individual video clips were replayed continuously. 
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5.2.4. Data Pre-processing and ICA/BSS-based Artifact Removal 

The original EEG data was subjected to average-referencing, followed by SSVEP trial 

segmentation and baseline correction, in order to remove any large baseline shifts from the 

DC-coupled 24-bit Biosemi EEG system. All ocular artifacts were removed using 

Independent Component Analysis (ICA) employing the Unbiased Quasi-Newton Algorithm 

for ICA (UNICA) (Cruces et al., 2000). The ICA/BSS approach and UNICA are described in 

more detail in the Appendix A. The UNICA algorithm was selected for this analysis after 

testing the performance of more than 20 ICA methods (Cichocki et al., ICALAB Toolboxes).

5.2.5. SSVEP Onset Detection Using Phase-Locking Value Reset and Wavelet 

Energy Variability Measures

In Chapter 3, a procedure was described allowing the estimation of the single-trial 

SSVEP responses in the brain using modified quadrature amplitude demodulation (QAD) 

(Bakardjian et al., 2010). In this analysis, the SSVEP estimations were performed by 

calculating and comparing the performance of two other measures – a single-trial phase-

locking value variability  ���
�

 and a single-trial wavelet energy variability !"�
�

. Both 

measures were designed to quantify individual rapid changes in brain activity immediately 

after SSVEP onset.  

Single-trial phase-locking values used here were computed for each fixed SSVEP 

frequency f over time t as follows: 

  #$��
�

(%) =
*

&
'∑ ,/-(.{0334

5
(1, %) − 0

2:�

5
(1, %)})

&

5;*
' ,          (11) 
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where N=12 was the number of EEG channels (over the occipital cortex, in this case),  j
2
 =  -

1, and 0334

5
(1) and 0

2:�

5
(1) were the phases of the normalized EEG signal s<<>

?  (i=1,...,N)

and the flicker reference signal @
2:�

5 , respectively. The reference @
2:�

5  (Pockett et al., 2009) 

was an artificial sine wave corresponding exactly to the flicker frequency f of the visual 

stimulus. The phase 0 for SSVEP frequency f was calculated using the imaginary and real 

components of the convolution of an input signal @5 with a complex Gabor wavelet !(1): 

  0
5(1, %) = ABC%AD

5EFG[H(�) ∗ J
K
]

2:FL[H(�) ∗ JK]
 .            (12) 

Using these definitions, the normalized single-trial phase-locking value variability 

measure $���
�

 was defined as the ratio: 

  $���
�

(%) =
∆NOPQ

R
(S)

NOPQR(ST)
  ,              (13) 

And the phase-reset change ∆#$��
�

(%) as calculated for each SSVEP frequency f was:

  ∆#$��
�

(%) = #$��
�

(%EFU
*J

) − #$��
�

(%V) ,           (14) 

where #$��
�

(%EFU
*J

) was the maximum phase-locking value reached within one second after 

the onset of the SSVEP stimulation, while #$��
�

(%V)  was the baseline phase-locking value 

at SSVEP onset t0, driven by the flicker phase reset of the occipital brain activity.  

The phase-locking value $��
�  (Lachaux et al., 1999), ranging from 0 to 1, is a 

measure used to represent the degree of phase stability for a signal frequency f. While often 

in multi-trial studies the PLV measure is computed over several trials, here only single trials 
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were evaluated due to real-time applications such as BCI. Measuring a smoothed single-trial 

PLV between channel pairs and over multiple time windows (Brunner et al., 2004) is also 

inappropriate in this case since it was essential to associate the PLV changes with the exact 

time of the SSVEP onset. That is why the single-trial phase-locking changes at the onset of 

SSVEP in this investigation were computed for each sample by measuring the degree of 

wavelet phase stability over a block of N occipital channels, in reference to the phase of a 

sine wave corresponding to the frequency of the SSVEP flicker stimulus. 

The second measure, that was applied to estimate SSVEP, was the single-trial Gabor 

wavelet energy variability which was used to quantify the normalized energy increase of the 

brain response at the flicker frequency during the first second following the SSVEP onset: 

   !"�
�

(%) =
∆NH6

R
(S)

NH6R(ST)
  ,             (15) 

where:   

   ∆#!"
�

(%) = #!"
�

(%EFU
*J

) − #!"
�

(%V) ,          (16) 

#!"
�

(%EFU
*J

)  was the maximum wavelet band energy value reached within one 

second after the onset of the SSVEP stimulation, and #!"
�

(%V)  was the baseline energy 

value at SSVEP onset t0.

5.2.6. Statistical Evaluations 

The PLVV and WTV measures for all subjects and experimental conditions were 

evaluated for statistical significance through a two-factor analysis of variance. Compared 

SSVEP measure types were considered significantly different if the probability that they do 

not belong to the same sample populations was above the 95% threshold (p < 0.05). 



113 

 

5.3. Results 

The analysis of the occipital brain response changes after the emotional-face SSVEP 

onset (averaged over all five flicker frequencies) showed that both for the phase-locking 

measure $���
�

(Fig. 26, upper panel), and for the wavelet energy measure !"�
�

(Fig. 26,

lower panel), the happy or angry face video flicker stimuli provided significantly stronger 

SSVEP activity than their blurred versions or neutral checkerboards. The optimal (strongest) 

mean responses were observed at 10Hz flicker (Fig. 27) for both SSVEP measures.

Statistical analysis using two-way analysis of variance tests revealed that the SSVEP 

activity was significantly dependent on the flicker stimulus type (p=0.0007 for the phase-

locking measure $���
�

and p=0.002 for the wavelet energy measure !"�
�
) (Fig. 28, green 

bars). Testing specifically for the effect of emotion, the affective faces provided significantly 

stronger SSVEP responses than their blurred versions (p=0.0005 for $���
�

and p=0.0004 

for !"�
�
) (Fig. 28, red bars). The mean of the normalized PLV increase after SSVEP onset 

was stronger for emotional stimuli by a factor of 2.2, while the normalized wavelet energy 

variability measures showed a similar but slightly lower amplification factor of ~2. 

However, there were no significant differences in the occipital SSVEP responses due 

only to emotional valence differences (joy vs. anger, p=0.61 for $���
�

and p=0.82 for 

!"�
�

) (Fig. 29, dark blue bars), even though the video stimuli with a positive valence 

(joy/happiness) tended to elicit slightly higher measures than negative ones (anger/irritation).

Furthermore, there were also no statistically significant differences between the brain

responses of individual subjects (p=0.85 for $���
�

and p=0.78 for !"�
�
) (Fig. 29, purple 

bars).
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When comparing both measures, the normalized single-trial phase-locking value 

variability measure $���
�

 exhibited lower variability and better sensitivity and reliability 

than the wavelet energy measure !"�
�
. Nevertheless, repeated signal analysis indicated that 

both measures could serve as complementary and valuable tools for the optimal estimation of 

SSVEP. 
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Fig. 26. Cortical changes at the onset of affective-face SSVEP and neutral SSVEP (mean 

values for all 5 measured frequencies). Affective SSVEP video stimuli evoked significantly 

stronger responses than their blurred versions or the neutral checkerboard. (upper panel)

Strength of the response using a normalized single-trial phase-locking variability measure;

(lower panel) Strength of the response using a normalized single-trial wavelet energy 

variability measure. The phase synchrony measure was more stable and sensitive to weak 

SSVEP oscillations than the wavelet energy.



116 

 

Fig. 27. Frequency response curve of the occipital brain for affective-face SSVEP and neutral 

SSVEP (mean values for all 5 types of stimuli). Stimulation frequency of 10 Hz evoked the 

strongest average changes, although the effect of flicker frequency did not reach statistical 

significance (p=0.26 for the phase measure and p=0.47 for the energy measure). (upper 

panel) Frequency response using a normalized single-trial phase-locking variability measure; 

(lower panel) Frequency response using a normalized single-trial wavelet energy variability 

measure. The phase synchrony measure shows slightly higher frequency dependence but 

lower variability than the wavelet energy measure.
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Fig. 28. Statistically significant SSVEP onset changes due to emotional-face contents of the 

flicker stimuli (p < 0.05). The probability bar marked ‘Emotion’ (red color) represents the 

statistical comparison between emotional-face SSVEP measures and their blurred versions. 

The bar marked ‘Stimulus Type’ (green color) represents the statistical comparison between 

SSVEP measures for all 5 available stimuli. 

Fig. 29. No significant SSVEP differences due to inter-subject variability (purple color) and 

emotion type/valence (positive-negative emotions, dark-blue color) (p > 0.05)  
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(a) 

(b) 

Fig. 30. Brain activation during affective-face and neutral SSVEP stimulation at 8.5Hz. (a) 

128-channel whole-head topographic maps of the SSVEP power calculated using Slepian 

multitaper spectrum estimation of the power spectral density (PSD) (Thomson, 1982) for 

each channel. This method has low time resolution but it can detect rhythmic activity robustly 

even if the signal-to-noise ratio is low. Frontal activity was observed in the affective 

conditions (happy and angry) for the narrow-band (±0.5Hz) SSVEP signal, while such 

activity was substantially reduced for neutral and blurred stimuli; (b) Source analysis of the 

brain activation in the SSVEP frequency band for affective (left) and neutral (right) stimuli.
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Chapter 6: 

ENHANCED MULTI-COMMAND SSVEP-BCI 

USING FLICKERING EMOTIONAL FACE VIDEOS

This chapter gives details on the design and evaluation of a new type of an online SSVEP-

BCI system using affective face video stimuli (Bakardjian et al., 2011) in order to improve upon the 

results described in Chapter 4.

  

6.1. Objectives 

Based on result from the previous Chapter 5, this chapter investigates the hypothesis 

that the visual flicker of images of human faces expressing strong emotion could optimize the 

the performance of a multi-command SSVEP-based Brain-Computer Interface (BCI) 

application by increasing the signal-to-noise ratio of the measured brain activity. In Chapter 3 

of this thesis it was shown that optimizing the stimulus features was essential for achieving 

stronger SSVEP and high performance of the SSVEP-BCI system.  

The objective of the new approach and experimental results presented in this chapter 

was to show that using short flickering affective-face videos as visual stimuli instead of the 

standard neutral checkerboards can lead to an essential advantage in creating faster, more 

reliable and easier to use Brain-Computer Interface systems for disabled and healthy users. If
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achieved, an increased SSVEP-BCI efficiency of the combined emotional-visual BCI 

paradigm should translate into an improvement of the information transfer rates. 

6.2. Methods 

6.2.1. Experimental Subjects 

The same eight healthy subjects (see Chapter 5) participated in the BCI experiments. 

All subjects were fully informed of all procedures and signed an informed consent agreement.

6.2.2. EEG Data Acquisition and Collection 

The brain signal acquisition in these experiments was performed using a BIOSEMI 

EEG system (Biosemi Inc, Amsterdam, The Netherlands) with sintered Ag/AgCl active 

electrodes, using a sampling rate of 512Hz. To enable a proper comparison, the 6-electrode 

layout was similar to the occipital configuration described previously in Chapter 4.

6.2.3. SSVEP-BCI Stimulation - SSVEP Using Emotional-Face Video Stimuli 

Although the general experimental setup was similar to that in the previous 

experiment, there were several notable exceptions. Eight different emotion-loaded video clips 

(Fig. 31) flickered simultaneously at different frequencies (5, 5.4, 6, 6.7, 7.5, 8.5, 10, 12 Hz). 

Each affective video was assigned as an independent command. 
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Fig. 31. Affective-face BCI interface with 8 commands. (a) The BCI stimulus control and 

neurofeedback user interface, featuring 8 short flickering affective videos with various 

emotions within the joy, anger and surprise categories 

Fig. 32. Neutral 8-command SSVEP-BCI stimulus designs using reversing checkerboard-type

patterns.
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Fig. 33. Multi-command BCI platform based on affective-face SSVEP - user control of a 

multi-joint robotic arm device (iARM). As the user attends a selected command stimulus on 

the screen, the recognized BCI command is executed to control a complex movement of the 

robotic arm (such as delivering a bottle/can/soft box with tissue paper, or serving a coffee cup 

drink to the lips of a disabled user).

The subjects directed their attention to a selected video to evoke an affective-SSVEP 

response and a corresponding movement of the robotic arm (Fig. 33). The computer display 

used for this BCI task was more compact (17” notebook PC).
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6.2.4. Online SSVEP-BCI Analysis and User-Interface Modules 

The BCI analysis module in these experiments was based on signal energy measures, 

as described in detail in Chapter 4 (Bakardjian et al., 2010). The affective-face SSVEP-BCI 

platform consisted of the following main modules: 6-channel EEG data acquisition (Biosemi, 

Biosemi Inc, the Netherlands), an analysis (signal processing and evaluation) unit, a stimulus-

control user interface, and a neurofeedback multi-joint robotic arm executive device (iARM, 

Exact Dynamics Inc, The Netherlands). 

6.3. Results 

6.3.1. Multi-command SSVEP-BCI Using Emotional-Face Video Stimuli 

The mean command delay was measured for all 5 types of stimuli used in the 

previous affective-face SSVEP experiment, for 10Hz flicker. The BCI delay was defined as 

the time between issuing a request for a specific command till the time this command was 

recognized from the user’s EEG by the signal analysis module. In agreement with the results 

of the previous experiments, the affective SSVEP responses were faster (Fig. 34) and 

exhibited less transient properties than in emotion-free checkerboards or blurred video. The 

mean BCI delay for commands using emotional face stimuli was 2.7s, while the mean neutral 

delay was 3.4s. The mean BCI success rates were 99% for emotional face stimuli, and 98% 

for their blurred versions and for checkerboards. 
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Overall, the 8-command BCI information transfer rate was boosted to 64 bits/min for 

emotional face stimuli, as compared to 50 bits/min for neutral stimuli. In addition to 

increased reliability, the BCI users reported reduced fatigue over long-term exposure to 

flicker, and enhanced ability to maintain their visual attention on the task. 
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Fig. 34. BCI command delays for affective-face video and neutral SSVEP. Emotions in the 

visual stimuli boosted substantially the speed of command recognition through enhancing the 

SSVEP detection signal-to-noise ratio.

6.3.2. Overall Behavioral Measures for the User Emotional Experience 

After each experiment, the participants responded to a few straightforward questions 

about their subjective emotional experiences. In that way, behavioral measures were also 

available for analysis, in addition to the brain responses. The information requested in the 

behavioural questionnaire included a self-estimate of the participant’s emotionality, and the 

degree to which they felt similar emotions (an empathic match) as they observed the actors 

depicting joy or anger. 

2.71s 2.64s 3.41s 3.48s 3.35s

AngryHappy Blurred-AngryBlurred-Happy Checkerboard
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The results (Fig. 35) showed that the degree of admitted personal emotionality as a 

trait (on a scale from 1 to 10) for all subjects was 6.3 ± 2.1. The degree to which they 

identified with the depicted positive emotion (from 1 to 10) was 7 ± 1.9, while for the 

negative emotion the score was 5.7 ± 2.2. The higher behavioural scores for positive emotion 

were in line with the results obtained using EEG measures. All subjects also stated that they 

did not experience any emotions while viewing the blurred video stimuli and the 

checkerboard.
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Fig. 35. Behavioral measures (self-estimate) in affective-face SSVEP experiments. The 

participants estimated the following scores (on a scale from 0 to 10): their degree of personal 

emotionality as a trait (left), the degree to which they felt happiness while watching the actor 

video (middle), and the degree to which they felt anger together with the actor (right). In this 

passive emotional approach, empathizing with happiness was more successful than with 

anger, for most participants.

6.3 7.0 5.7
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Chapter 7: 

CONCLUSIONS

The research described in this thesis aimed to solve several essential problems in the 

wider field of SSVEP-based Brain-Computer Interfaces. Overall, five types of EEG 

experiments were performed to obtain the necessary brain data: 

1) 6-sec SSVEP stimulation with increasing frequency using a very small 

checkerboard in order to measure the frequency response curve for this type of 

stimuli (offline processing, Chapter 3) 

2) 15-sec SSVEP stimulation at 3 frequencies using very small checkerboards to 

study the actual onset response dynamics (offline processing, Chapter 3) 

3) BCI evaluation using 8 independent small checkerboards reversing at 8 

frequencies  (online processing, Chapter 4) 

4) 30-sec SSVEP stimulation at 5 frequencies using 5 different video stimuli (happy 

and angry emotional faces, their blurred versions and checkerboards) to study the 

potential optimization effects of emotional-face contents (offline processing, 

Chapter 5) 

5) BCI evaluation using 5 stimuli (happy and angry emotional faces, their blurred 

versions and checkerboards) to study the effects of emotional-face contents 

(online processing, Chapter 6).

Furthermore, the signal processing approaches in this work involved the following 

main methods of analysis: 
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1) ICA/BSS artifact rejection (offline and online, Chapters 3, 4, 5, 6, Appendix A) 

2) Bandpass-based SSVEP feature extraction (offline and online, Chapters 3, 4, 5 

and 6) 

3) Normalized quadrature amplitude demodulation envelopes of the SSVEP brain 

response (offline, Chapter 3) 

4) Normalized phase-locking value variability (PLVV) and wavelet-transformed 

energy variability (WTV) (offline, Chapter 5) 

5) Statistical evaluation using two-factor analysis of variance (Chapters 3 and 5) 

6) Other methods - inter-trial reproducibility analysis using cross-cumulant measures 

in single trials, area analysis, time-frequency decompositions using wavelet bases 

(Chapter 5). 

The research described in this thesis has given successful proof, by using both signal 

processing techniques and neurophysiological experiments, for reaching the following 

general conclusions. 

7.1. Conclusions – Properties of SSVEP Using Small 

Checkerboard Stimuli 

Chapter 3 described an investigation of basic SSVEP properties such as the frequency 

characteristics and the time dynamics of the brain responses to small reversing checkerboard 

patterns. This knowledge was used in subsequent experiments to optimize the performance of 

SSVEP-based BCI systems. Specifically, the following conclusions were reached about 

SSVEP properties: 
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1) SSVEP stimulus size: Very small checkerboard stimuli, with diameter of 2.5° arc 

(size comparable to the fovea), elicited measurable and consistent SSVEP responses. Such 

small stimuli are necessary to minimize visual occlusion and free up useful screen space for 

executive purposes in applications such as multi-command BCI. 

2) SSVEP frequency response curve – optimal frequency range: The frequency 

responses of the brain were measured for 32 discrete SSVEP stimulation frequencies from 5.1 

Hz to 84.0 Hz using EEG data. The frequency stimulation range 5.6 – 15.3 Hz was found to 

be optimal for small patterned stimuli based on z-score analysis of the normalized brain 

responses.  

3) SSVEP frequency response curve – local maxima: The maximal response to 

small-checkerboard SSVEP stimulation was elicited for 12Hz. Overall, local maxima in the 

frequency response were observed at 5.6 Hz, 8 Hz (7.6-8.8 Hz), 12 Hz, 15.3 Hz, and 28 Hz, 

with an additional small local enhancement at 42 Hz. For higher stimulation frequencies the 

brain responses deteriorated gradually. The highest inter-subject variability was observed at 

9.9 Hz (which corresponds to individual differences in the intrinsic alpha-band activity).

The results for small-checkerboard reversal were in partial agreement with previous 

reports using different stimuli. Srinivasan (Srinivasan et al., 2006) showed that random-dot 

patterns elicited occipital response peaks at 12 Hz, as well as 8 Hz. Koch (Koch et al., 2006) 

experimented with red flash stimulation using goggles and found EEG response peaks for 11

Hz, and also for 5 Hz flicker. Furthermore, corroborating the findings described in this thesis, 

a study using transcranial magnetic stimulation (TMS) demonstrated strongest suppression of 

the brain’s flash response when the lag between the stimulus and the magnetic pulse was 80-

100 ms (Amassian et al., 1989). 

4) SSVEP time dynamics – onset and peak markers: The first measurable SSVEP 

local maxima after the start of stimulation were observed at 1.5-2.5 s in single trials (~1.5 s 
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delay for 14 Hz, ~2 s for 8 Hz, and ~2.5 s for 28 Hz), as the SSVEP activity gradually 

increased after stimulation onset. In almost all trials, the SSVEP largest maxima were usually 

delayed by several seconds after the first peak. Before the first maxima, the earliest initial 

SSVEP onset delays (estimated according to individual baseline activity) were measured 

starting from 0.5 s after stimulation start. The SSVEP onset delays were also considerably 

frequency-dependent, with the largest mean delays observed for the highest measured 

frequency (28 Hz).  

The proper understanding of the time delays of the SSVEP peak response to small 

checkerboard stimuli is essential in evaluating the inherent time-delay limitations of SSVEP-

based BCI commands, and in overcoming these limitations by new methods. The relatively 

long SSVEP peak time delays, as observed in the narrow-band filtered data, may be 

accountable by attentional switching mechanisms which could cause delays of up to 0.6-0.8 s 

between cue onset and SSVEP facilitation (Müller et al., 1998). 

5) SSVEP time dynamics – optimal frequency: Among the three investigated 

reversal frequencies in these experiments, 8 Hz (LF), 14 Hz (MF), and 28 Hz (HF), the 14 Hz 

response was the strongest in average and its first peak was the fastest (except for one subject 

who exhibited an 8 Hz preference). This result is in agreement with finding 2). 

6) SSVEP time dynamics – non-stationarity: The dynamics of extended SSVEP 

responses (15 s in duration) were found to be essentially non-stationary, especially for higher 

stimulation frequencies (28 Hz). Recent EEG studies often examine relatively short-term 

SSVEP oscillations or otherwise ignore the oscillation envelope changes, which could be 

substantial at higher frequencies. Also, slow SSVEP envelope modulations with a period of 

roughly 2-3 s were observed in the data (Fig. 6), which may be due either to natural 

fluctuations in attention, or to inhibition feedback in order to prevent fatigue and preserve 

concentration, or possibly due to another unknown mechanism. 
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7) Influence of brain sensor locations on SSVEP response quality: SSVEP 

measurements at three scalp locations (occipital, parieto-temporal and frontal) showed that 

the SSVEP responses are available, but decline in quality with increasing distance from the 

occipital cortex. In addition, occipital sensor locations ensured the highest inter-trial 

reproducibility. 14 Hz responses were most reproducible when 8 Hz, 14 Hz, and 28 Hz were 

compared. The non-stationary SSVEP activity envelope was more transient and the shape of 

the responses was less predictable with repetition at the suboptimal parieto-temporal and 

frontal sensor locations for all studied stimulation frequencies. In that way, SSVEP 

measurements at non-occipital sites can be used for new, more practical SSVEP-BCI designs, 

but at the cost of reduced SSVEP signal quality. 

Overall, it is concluded that the optimization of the experimental stimulus parameters 

in order to evoke a maximal visual brain response is essential due to possible substantial 

differences in the brain responses. SSVEP stimulus optimization enables higher efficiency for 

any SSVEP application, including the 8-command BCI system presented in this thesis.  

7.2. Conclusions - Multi-command SSVEP-BCI SSVEP 

Using Small Checkerboard Stimuli 

The design and evaluation of an 8-command SSVEP-based BCI system using visual 

stimuli with optimized brain responses lead to the following conclusions: 

1) SSVEP-BCI – overall evaluation: The BCI system reached a mean command 

success rate of 98 % and mean command recognition delay of 3.4 ± 0.7 s, with information 

transfer rates of 50 bits/min, as the performance of the 8-command BCI system was measured 

in evaluation mode (using voice request-responses) 
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2) SSVEP-BCI – optimal frequency range: The highest possible BCI information 

transfer rates and robustness for the proposed paradigm were achieved for very small 

checkerboard SSVEP patterns reversing in the optimized 6.0 - 16.8 Hz range. 

3) SSVEP-BCI – effect of close proximity and large number of stimuli: It is 

feasible to deploy a large number of small-checkerboard SSVEP patterns in close proximity 

to each other without substantial brain response interference. Close aggregation, small size 

and rapid movement of the 8 reversing patterns did not affect BCI performance negatively, 

and users were able to attend successfully to each selected pattern. The small size of the 

patterns and their attachment to the moving controllable object served to reduce the time and 

distraction from large eye movements necessary for patterns for example fixed to the edges of 

the screen (Trejo et al., 2006). This maximally robust mode of aggregated stimulation 

improved user performance and reduced fatigue by scaling down the demands on visual 

attention, especially over longer periods of operation. 

4) SSVEP-BCI – movement of SSVEP stimuli: It is feasible to acquire reliable 

SSVEP responses from fast moving flickering/reversing visual patterns, in a novel dynamic 

paradigm for pattern SSVEP BCI (control of a moving object) 

5) SSVEP-BCI – non-occipital sensor locations: It is feasible to use sub-optimal 

temporal or pre-frontal sensor locations on the scalp for new SSVEP-BCI designs with dry 

electrodes (without the need for application of EEG gel) 

Since it is basically advantageous for BCI to use as small number of sensors as 

possible, SSVEP-based BCI systems employ mainly optimal electrode locations over the 

medial occipital (Lalor et al., 2004) or parieto-occipital cortex (Wang et al., 2006). However, 

in practical BCI applications it may be desirable to attach the brain sensors effortlessly, 

quickly and without the necessity for wet EEG gel. Hairless scalp locations such as the 

forehead and around the ears could meet these requirements if the feasibility of this approach 
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could be demonstrated. That is why the performance of the SSVEP-based BCI was compared 

for 3 sensor locations – occipital, parieto-temporal, and frontal, in an extension of the 

neurophysiological SSVEP results in Chapter 3. As expected, the occipital locations 

facilitated optimal visual cortical responses, enabling the highest mean success rate (98 %) 

and the shortest mean time delay (3.4 s) necessary for the online analysis algorithm to capture 

reliably the user’s intent. The hairless inferior parieto-temporal (near ears) and frontal (on 

forehead) electrode locations, which are more convenient for practical daily application, also 

enabled identification of the SSVEP response onset, however at the cost of increasingly 

reduced quality with greater distance from the visual cortex. The success rate was 81 % 

(delay 4.0 ± 1.2 s) for parieto-temporal locations, and 74 % (delay 4.3 ± 1.5 s) for frontal 

sensors. 

6) SSVEP-BCI – SSVEP non-stationarity: On the basis of the results in Chapter 3, 

it is recommended for SSVEP-based BCI designs always to take into account the highly non-

stationary and frequency-dependent nature of the SSVEP responses by using adaptive feature 

extraction, as well as stimuli with optimal characteristics capable of evoking the strongest 

single-trial brain responses possible.  

7) SSVEP-BCI – user training: There were no observable changes in the SSVEP-

BCI performance as novice users acquired better expertise in operating the BCI system, apart 

from a very short testing during the initial introduction to the task. 

Overall, it is concluded that SSVEP-based BCI systems can achieve excellent 

reliability even for a high number of commands and little or no user training, if optimal 

stimulus parameters are used, and if proper inter-subject normalization measures are taken by 

the online analysis algorithm. It is feasible for practical adaptive BCI systems to utilize a

large number of small checkerboard stimuli in close proximity to each other, as well as 

moving SSVEP stimuli. SSVEP-BCI is possible also when using only a few active sensors in 
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suboptimal but hairless scalp locations, for example, mounted on a cap headband or 

incorporated in a sunglasses frame.  

7.3. Conclusions – Properties of SSVEP Using Emotional-

Face Video Stimuli 

In Chapter 5, some essential brain response properties were studied for SSVEP flicker 

using emotionally-charged (Caucasian female) face video stimuli. The emotional face stimuli 

were compared to their blurred versions to remove the contents (De Cesarei and Codispoti, 

2008), as well as to reversing checkerboards. The aim of these experiments was to evaluate 

this novel type of SSVEP stimuli for a subsequent application to BCI. The following 

conclusions were reached about emotional-face SSVEP properties:

1) Emotional-Face SSVEP – effect of stimulus type: SSVEP activity (averaged 

over flicker frequency) was statistically significantly dependent on stimulus type 

2) Emotional-Face SSVEP – effect of emotion/faces: Affective face video SSVEP 

stimuli provided significantly stronger SSVEP responses than their corresponding 

emotionally-neutral blurred versions 

3) Emotional-Face SSVEP – no effect of emotional valence: No significant 

differences in the occipital SSVEP responses were detected due only to emotional valence 

differences (happiness vs. anger) 

4) Emotional-Face SSVEP – no effect of inter-subject variability: Furthermore,

there were also no statistically significant differences between the SSVEP responses of 

individual subjects for all experimental conditions.
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5) Emotional-Face SSVEP – effect of frequency: A frequency response curve was 

constructed for 5 SSVEP stimulation frequencies (5 - 12 Hz). The average SSVEP activity 

was strongest for 10Hz flicker when averaged over all stimulus types. 

6) Emotional-Face SSVEP – behavioural measures: At the end of each experiment 

the subjects evaluated their degree of empathy (on a scale of 1 to 10) with the observed 

emotional faces. In general, they identified themselves slightly better with joyful faces than 

with angry ones (7 ± 1.9 for joy vs. 5.7 ± 2.2 for anger). A measure of self-estimated personal 

emotionality (also on a scale from 1 to 10) showed that the eight Japanese subjects were only 

moderately emotional (6.3 ± 2.1), which also indicates the relevance of cultural influences on 

affect.

7) Emotional-Face SSVEP – effect on attention and fatigue: The subjects also 

reported substantially higher level of attention (interest) for affective-face stimuli, as well as 

higher resistance to fatigue after long-term SSVEP exposure. 

8) Emotional-Face SSVEP – phase-based and energy-based algorithms for 

SSVEP onset detection and evaluation: Novel single-trial phase-locking value variability 

(PLVV) and wavelet-transformed energy variability (WTV) measures were used in this 

offline analysis. The phase-based PLVV measure was found to be a more sensitive and fast 

indicator of SSVEP lock-in than the oscillation energy increase WTV measure. However, it

was also observed that phase-resets at the flicker frequency may infrequently occur also due 

to other (background) brain events. It is concluded that an optimal SSVEP detection 

mechanism would be based on a parallel implementation of both phase-locking and energy 

variability tools in order to offer best results in terms of signal sensitivity, elimination of 

competing brain transients in the critical SSVEP frequency bands, and lower inter-subject 

variability.
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Overall, it is concluded that the emotional-face contents in SSVEP stimuli were able 

to enhance the visual flicker responses of the brain, an effect which can be applied for 

optimized SSVEP-BCI systems.  

7.4. Conclusions – Multi-command SSVEP-BCI SSVEP 

Using Emotional-Face Video Stimuli 

On the basis of the findings of the previous neurophysiological experiments, happy 

and angry face video stimuli, as well as their blurred versions, and reversing checkerboards, 

were used to evaluate the hypothesis that affective-face video content of the SSVEP stimuli is 

able to optimize further the performance of a SSVEP-BCI systems. The following further 

conclusions were reached:  

1) Emotional-Face SSVEP-BCI – evaluation: BCI command detection for 10 Hz 

flicker was ~20 % faster for affective-face SSVEP than for content-free blurred video or for 

neutral checkerboard stimuli (mean BCI delay 2.7s vs. 3.4s; mean BCI success rate 99% vs. 

98%). When using affective-face stimuli, a higher mean BCI information transfer rates (ITR) 

of 64 bits/min was achieved, as compared to 50 bits/min for the neutral stimuli. 

2) Emotional-Face SSVEP-BCI – SSVEP non-stationarity over time: Flicker 

stimulation using emotional face videos resulted in more stable and reliable band-pass 

SSVEP measures over time, in spite of the inherent non-stationarity of the brain’s flicker 

response. 

3) Emotional-Face SSVEP-BCI – multi-command attention load and fatigue: All

users reported that their experience was enhanced by the affective-face video content as

motivation (Lang, 1995) was sustained at higher levels (Kleih et al., 2010; Campanella et al., 

2010) during switching of the attention focus between the different affective face stimuli. As 
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a result, BCI users also reported reduced long-term fatigue and frustration (according to the 

NASA TLX Frustration Scale).

4) Emotional-Face SSVEP-BCI – executive devices requiring high reliability: The 

optimized performance of the affective-face video SSVEP brain responses allowed the 8-

command SSVEP-BCI system to control smoothly a multi-joint robotic arm with pre-

programmed complex movements, targeted mainly for disabled users confined daily to 

wheelchair or bed settings.

Overall, it is concluded that it is advantageous to employ emotional-face video stimuli 

in SSVEP-based practical applications such as BCI. 

7.5. Remaining Open Problems 

The results achieved in this work also expose a number of open, unresolved problems 

in the research fields of SSVEP-BCI and SSVEP. Some of these problems may even be 

described as ‘fundamental’ since they would require a new theory or a new level of 

understanding of the relevant brain mechanisms. Undoubtedly, efforts from many research 

groups will present the solutions which are still not evident.  

Some of the questions that may be raised are as follows (in order of presentation of 

the relevant topics in the thesis): 

7.5.1. Open Problems - Steady-State Visual Evoked Potentials (SSVEP) 

1) SSVEP - frequency response curves and stimulus shapes: The brain responses 

to SSVEP stimulation are very dependent on various stimulus parameters, since the visual 

system is highly sensitive to all details of the visual scene. When estimating the basic SSVEP 
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frequency response curve, currently there is no single answer as to its shape, and what are the 

‘optimal’ stimulation frequencies. Especially important is the dependency of the frequency 

response on the stimulus size, shape and pattern composition. For example, SSVEP 

stimulation using large white stimuli has a different frequency response than SSVEP with 

very small checkerboards, or natural content such as emotional faces. It is imperative that 

researchers should understand the objective laws of this stimulus dependency in visual 

cortical processing, so that informed decisions can be made in SSVEP applications without 

the need for empirical measurements for each used stimulus shape. Until then, a research 

database of known SSVEP frequency responses could contribute substantially to the better 

comparison between various studies, similarly to other knowledge mapping efforts (Bohland 

et al., 2009). 

2) SSVEP – time dynamics problems caused by inherent SSVEP non-

stationarities, attention: Even though a human subject can clearly perceive an uninterrupted 

train of SSVEP flicker, most often the EEG brain responses are highly unstable and changing 

over the time span of several seconds. This phenomenon is probably due to the imperfection 

of the recording equipment, as well as the continuous interference between simultaneous 

brain-processes generating competing EEG output signals in the SSVEP stimulation band. It 

will be highly beneficial to create a new way of recording more stationary SSVEP signals 

with clear onsets and offsets synchronized with the stimuli. 

3) SSVEP – signal extraction methods: A multitude of SSVEP signal extraction 

methods exists depending on research goals and requirements. The creation of a systematic 

taxonomy of SSVEP extraction algorithms, with their strengths and weaknesses, would 

enable more efficient SSVEP research and better comparisons between studies. 
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7.5.2. Open Problems - SSVEP-Based Brain-Computer Interfaces 

1) SSVEP-BCI – reduction of online command delays: The mean time delay for 

BCI commands in this work was ~3.4 s for small checkerboard stimuli and ~2.7 s for 

affective-face video stimuli. Some previous SSVEP-BCI studies referred to delays of up to 7 

s (Trejo et al., 2006). EEG experiments described in Chapter 3 were specifically targeted at 

determining the time dynamics limits and causes of such delays due to inherent brain 

response properties. As a result, the more sensitive phase-locking approach (offline) in 

Chapter 5 is a promising alternative to classical FFT-based or band-energy-based SSVEP 

estimation methods. Nevertheless, there is a clear need for online signal processing methods 

which are able to detect reliably and without substantial delay the onset of even very weak 

SSVEP responses such as those triggered by the small checkerboard stimuli used in this 

work.

2) SSVEP-BCI – visual sensory channel occupancy problem: By design, the 

SSVEP-based BCI paradigms require not only user’s full attention, but also the complete

engagement of the visual system, processing the user-selected external SSVEP stimuli to 

generate new BCI commands. This constitutes a disadvantage for this type of multi-command 

BCI in situations when the operator needs to use the visual field to control devices or observe 

the results of the most recent BCI neurofeedback (executive device). To reduce this problem 

to a minimum, the design in Chapter 4 of this thesis addressed it directly by decreasing the 

stimulus sizes to a minimum to avoid visual occlusion as much as possible. Nevertheless, 

new approaches may be necessary, such as using reliably covert attention (Müller and 

Hillyard, 2000) to peripheral SSVEP stimuli. 

3) SSVEP-BCI – sensors type and location problems: Current SSVEP-BCI systems 

use mostly electroencephalography (EEG) for data acquisition due to the compact size and 
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low price of the devices. However, there is an essential problem in relation to that recording 

mode which is preventing a more wide-spread use of BCI systems for daily application. EEG 

sensors normally require the usage of conductive electrode gel to provide an acceptable 

signal-to-noise ratio for the acquired brain signals. This gel could dry out within a few hours 

of usage, and needs to be washed away at the end of the experiments. Recognizing this 

problem, recently new types of ‘dry’ electrodes without the need for connecting gel are being 

developed (Taheri et al., 1994; Searle et al., 2000; Fonseca et al., 2007), and increasingly 

made available by equipment manufacturers. Yet, a reliable and casual connection for such 

contactless electrodes may still require their preferred application on a hairless surface of the 

scalp, such as the forehead, or behind the ears. Again, experiments in Chapter 4 specifically 

investigated the feasibility of using such brain locations for SSVEP-BCI, and found it

acceptable, although with decreased performance. Still, this problem persists, and new signal 

processing approaches are necessary to deal with weaker and more non-stationary SSVEP 

signals from non-visual brain locations, as well as potentially less reliable ‘dry’ electrodes, 

sweat and movement artifacts, and other factors interfering with an optimal BCI performance. 

7.5.3. Open Problems – Affective-face video SSVEP and Brain-Computer 

Interfaces Based on Stimuli with Emotional or Cognitive Content 

1) Affective-face video SSVEP stimuli – origins of the emotion-vision interaction:

While SSVEP brain responses to simple visual stimuli (Regan, 1966), such as white squares 

or checkerboards, have predominantly visual components, including cognitive or emotional 

content in the stimuli, as well as enhancing the experience by natural video sequences, may 

increase substantially the complexity and non-linearity of the brain responses. The work 

presented in Chapter 5 of this thesis has demonstrated an enhancement of the oscillatory 
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visual activity due to emotional faces. However, the precise mechanisms of such response 

gain still remain to be investigated. One feasible hypothesis is that activity in the visual 

cortex corresponding to SSVEP is being boosted through a complex feedforward-feedback 

network connecting the primary visual cortex, the extrastriate visual cortex, the 

inferotemporal visual cortex, the amygdala, prefrontal brain areas, and the insula. A proposed 

model of these emotion-vision interactions, based on corroborating research reports, is shown 

in Fig. 36. According to this model, most essential for the observed boosting effect are the 

feedback connections from emotion-processing areas such as the amygdala and the prefrontal 

areas to the inferotemporal visual cortex, and back to other visual areas from there. 

Reportedly, the amygdala has also direct feedback connections to visual areas V1, V2, and 

V4 (Amaral et al., 2003), as shown in the connectivity model as well. It should be also 

mentioned here that additional brain processing (not shown in the model) of the affective face 

video stimuli presented in Chapters 5 and 6 of this thesis also occurs in the fusiform area 

responsible for face analysis, while the MT/V5 cortical area responds to the visual motion 

component of the video stimuli. 
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Fig. 36. A proposed model of emotion-vision interactions.  The model includes feedforward-

feedback connections between the primary visual cortex (V1), the extrastriate visual cortex 

(V2, V4), the inferotemporal visual cortex (IT), the amygdala (AM), prefrontal brain areas 

(OFC,MPFC,AC), and the insula (IN).  Feedback connections from the amygdala and the 

prefrontal cortex to visual areas allow affective gating of visual input. 

Ref: (Amaral and Price, 1984; Stefanacci and Amaral, 2002; Amaral et al., 2003; Freese and Amaral, 

2005; Freese and Amaral, 2006; Sabatinelli et al., 2009; Rolls, 2009; Ghashghaei and Barbas, 2002; Höistad and 

Barbas, 2008; Barbas, 2007a; Barbas, 2007b; Barbas et al., 2010)
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2) Affective-face video SSVEP – Emotion-attention interactions: The exact 

relationship between emotion processing and attentional processes has still not been 

completely clarified, and conclusions from different studies are rather controversial. 

Nevertheless, there is evidence that while in coarse affective-face tasks attention is not 

essential for producing emotional responses, in more demanding tasks attention modulates 

the processing of emotional stimuli (Pessoa, 2005). For example, briefly presented emotional 

faces do not automatically capture visual attention (Koster et al., 2007), however, beauty has 

been found to activate the same parietal regions which are associated with spatial attention 

(Kawabata and Zeki, 2004). Furthermore, emotional cues that signal reward or danger are 

able to capture attention preferentially (Lang et al., 1997; Vogt et al., 2008). In that way, 

visual attention may also play a substantial role in the emotion-vision interactions proposed 

in Fig. 36, recruiting other brain areas. The exact sources behind the SSVEP enhancement for 

emotional-face stimuli still remain to be investigated. 

3) Affective-face video SSVEP-BCI – individual variability: While the work 

presented in Chapter 5 has shown that SSVEP responses were enhanced by emotional-face 

content, there may be additional sources of inter-subject variability due to differing cultural 

perceptions, mood swings, as well as the presence of negative emotions for some anxiety-

prone users. Keeping the affective arousal moderately low may partially address this problem 

(as it was done here) but it may also reduce the effectiveness of the presented novel 

emotional-cognitive approach for the optimization of SSVEP-BCI paradigms. 
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7.6. Possible Future Directions for SSVEP-BCI 

Brain technologies such as BCI have a strong potential to serve society. Some of the 

possible future directions for the SSVEP-based BCI designs presented in this thesis are:

1) Robust Hybrid BCI systems (Pfurtscheller et al., 2010a,b) using integration of 3 or 

more independent BCI types (such as SSVEP-BCI, motor-imagery BCI, P300-BCI and 

others). Easy switching between systems for users who have difficulties with a particular BCI 

type; Enhanced usage of commands when 2 or more BCI type are used simultaneously 

2) Robust SSVEP-BCI systems with more than 20 independent commands, which 

would work reliably for most home users 

3) New online SSVEP-BCI algorithms to detect reliably SSVEP activity immediately 

at stimulation onset 

4) New error-resistant SSVEP-BCI designs to minimize false-positive commands

even outside the laboratory, as the brain may use the same frequencies as the SSVEP flicker 

for other activities 

5) Non-invasive remote control of appliances in intelligent e-homes (electronic 

homes) with BCI control capabilities. SSVEP-BCI-based e-homes would feature numerous 

small LCD screens each corresponding to a single BCI stimulus and command. This concept 

is conditional on the development of remote sensors to measure the brain activity from a 

distance 

6) Robust SSVEP-BCI robotic prosthesis limbs (using either small portable 

screen(s) or e-home-based)

7) Effective SSVEP-based diagnostic probes for hospitals, clinics, or nursing homes 

for diagnosis of neuropathological conditions. 
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7.7. A Few Final Words 

Unraveling the ‘mysterious’ brings great satisfaction to the inquiring mind (to 

paraphrase Einstein). I hope that with the work described in this thesis I can help use a few of 

the mysteries of the brain for the benefit of society. Reliable multi-command Brain-Computer 

Interfaces with designs such as the ones described in this thesis hold the promise of making 

life better for those disabled individuals who need our help the most. Finally, I would be 

greatly satisfied if the presented results would inspire others to continue from where this 

work has ended. 
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Appendix A: 

INDEPENDENT COMPONENT ANALYSIS (ICA)

This appendix describes details of the Independent Component Analysis (ICA) 

method and the more general case of Blind Source Separation (BSS). The specific properties 

of the three ICA/BSS algorithms used in this thesis are given at the end of Appendix A. 

A.1. Introduction 

The main objective of the ICA/BSS procedure is to separate multi-channel input data 

into source components. When this ‘unmixing’ process is performed without any a-priori 

knowledge of the properties of the input signals, then it is called ‘blind source separation’ 

(BSS). BSS is a wider term for a second-order statistics (SOS) procedure which guarantees 

only that the sources will be spatio-temporally uncorrelated (independence is not required). 

The estimated sources would generally have low complexity and best linear predictability. 

Independent Component Analysis (ICA) represents a subset of BSS methods which include 

criteria for statistical independence as its objective is to find such a transformation for which 

the output signals (components) would be maximally independent. Since ICA/BSS 

performance may depend on several factors such as the specific algorithm, number of input 

channels, length of the input data, level of interfering ‘noise’, and so on, one essential 

problem in ICA/BSS pre-processing of EEG data is the challenge in evaluating and selecting 
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the necessary components automatically. Several methods exist which are either based on the 

single-trial properties of the signal (Cichocki et al., ICALAB Toolboxes) (see also below), as 

well as the multi-trial structure of the data (Bakardjian, 2004b). 

A.2. Independent Component Analysis (ICA) 

ICA is a process which can extracts from exploratory (observed) input data  

represented by the m-dimensional  vector x(t) (t = 1,2,…,N) a new set of statistically 

independent components represented by the n-dimensional vector 

     X(%) = !/(%).               (17) 

These components correspond to estimates of hidden or latent variables in the data 

called sometimes sources.  This process assumes that a time series x(t) has an embedded 

mixing process of the form 

     /(%) = Y@(%),                (18)

where A denotes an unknown mixing matrix and s(t) is a vector representing unknown hidden 

(latent) variables or sources. ICA can be considered as a demixing or a decomposition 

process which is able to recover the original sources, i.e.,  

X(%) = @̂(%),                (19) 

through the linear transformation y(t) = Wx(t). The fact that two random variables are 

uncorrelated does not also imply that they are independent.  This fact is lost in using other 

methods such as Principal Component Analysis (PCA).  The ICA approach seeks to find such 

independent directions through maximization of a suitable cost function called sometimes 

contrast function which is a measure of statistical independence. Such functions can be 

maximized or minimized using various optimization methods, including artificial neural 

networks. 
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Fig. 37. Block diagram of the ICA/BSS component / artifact rejection procedure. After the 

input EEG signals are decomposed into independent-components / blind-sources, an 

automatic ‘switch’ procedures estimates which ones are artifacts. Only the remaining ‘clean’ 

components/ sources are reconstructed back to sensor / EEG space. 

A.3. Algorithms for ICA 

Independent component analysis (Fig. 37) can be considered an extension of the 

principal component analysis (PCA) method. In PCA, the input data x(t) is decorrelated to 

find the components that are maximally uncorrelated according to second-order statistics. 

PCA gives orthogonalized and normalized outputs according to the second-order statistics by 

minimizing the second-order moments. The principal components can still be dependent 
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however. The problem of independent component analysis or blind source separation of 

sources mixed instantaneously, can be defined as follows. Let’s assume that we have 

available to us a set of multivariate time series {xi(t)}   (1,2,…,m). We assume also that these 

time series, for example corresponding to individual EEG electrodes, are the result of an 

unknown mixing process defined by the following relationship: 

    /5
(%) = \ A5^@̂ (%)

_

^;*

                   (` = 1,2, … , c)            (20) 

or equivalently in compact matrix form x(t) = A s(t) (t=1,2,…,N), where A is an unknown 

mixing matrix sized m by n, and s(t) = [s1(t),s2(t),…,sn(t)]
T
 are hidden (latent) components 

called the sources. We seek to estimate the unknown sources sj(t) using only the observed 

data vector x(t) = [x1(t),x2(t),…,xm(t)]
T
. The problem is to find a demixing or separating 

matrix W such that y(t) = Wx(t) estimates the hidden independent components. It is possible 

that there could be a different numbers of sensors than sources, that is, A may not be square. 

If it is assumed that the number of sources (hidden components) is the same as the number of 

time series or observed inputs n, then A is a square (n by n) matrix. If  W = A
-1 

,  then         

y(t) = s(t), and perfect separation occurs. In practice, the optimal y will be some permutated 

and scaled version of s, since it is only possible to find W such that WA = PD where P is a 

permutation matrix and D is a diagonal scaling matrix.  In general, the ICA of a random 

vector x(t) is obtained by finding a n by m, (with m n³ ), full rank separating 

(transformation) matrix W such that the output signal vector y(t) = [y1(t),y2(t),…,yn(t)]
T

(independent components) estimated by  y(t) = Wx(t), are as independent as possible. 

Compared with the principal component analysis (PCA), which removes second-order 

correlations from observed signals, ICA further removes higher-order dependencies.  

Statistical independence of random variables is a more general concept than decorrelation. In 

general, we can state that random variables yi(t) and yj(t) are statistically independent if 

knowledge of the values of yi(t) provides no information about the values of yj(t).
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Mathematically, the independence of yi(t) and yj(t) can be expressed by the relationship 

p(yi,yj) = p(yi)p(yj), where p(y) denotes the joint probability density function (pdf) of the 

random variable y. This means that the signals are independent if their joint probability 

density function can be factorized into marginal distributions. 

A.4. Deflation and filtered reconstruction of multidimensional data

After extracting the independent components or performing blind separation of 

signals (from the mixture), we can examine the effects of discarding some non-significant 

components by reconstructing the observed EEG data from the remaining components. This 

procedure is called deflation or reconstruction, and allows us to remove unnecessary (or 

undesirable) components that are hidden in the mixture (superimposed or overlapped EEG 

data). In other words, the deflation procedure (Fig. 37, right side) allows us to extract and 

remove one or more components (or estimated sources) from the mixture data x(t).  

The deflation procedure is carried out in two steps. In the first step, the selected 

algorithm estimates the demixing (separating or decomposition) matrix  W and then performs 

the decomposition of the data observations into the independent components y(t) = Wx(t).

In the second step, the deflation algorithm eliminates one or more components from the 

vector y(t) and then performs the back-propagation 

     / (!) = "
†
X (!),               (21) 

where xr(t) is a vector of reconstructed input (exploratory) data x(t), "
†
= Y#   is a 

generalized pseudo inverse matrix of the estimated demixing matrix W, and yr(t) is the vector 

obtained from the vector of independent components y(t) after removal of all the undesirable 

components (i.e., by replacing them with zeros). In the special case, when the number of 



152 

 

sources is equal to the number of observations (and the number of outputs), we can use the 

standard inverse matrix  W
-1

  instead of the pseudo-inverse " † .

In block data format, the reconstruction procedure can be described as 

     $ = "
†
%  ,                (22) 

where  Xr = [xr(1),xr(2),…,xr(N)] is the reconstructed (filtered) exploratory data, 

and  Yr = [yr(1),yr(2),…,yr(N)] is the reduced set (selected or filtered) of the significant 

independent components. In the deflation procedure, we can eliminate undesirable 

components by discarding some of the components which represent, for example noise, 

artifacts or random interference. 

The selection of a meaningful and useful subset of input variables is a difficult task. 

Procedures such as factor analysis (FA) and principal components analysis (PCA)  have been 

widely used in this area. Both have been shown to have significant limitations. Independent 

Component Analysis (ICA) enables the extraction of independent components (ICs) from a 

set of multivariable observed (e.g. EEG data) x(t). ICA is a process which statistically 

reduces a possibly very multidimensional complex data set into sub-components which are 

statistically independent.  This procedure reduces the number of explanatory variables by 

condensing the set of information to a much smaller set of significant ICs. These ICs are 

expected to capture most of the useful information regarding the underlying events that form 

the basis for the indexes. Removal of some ICs representing the random processes, on-going 

activity of the brain or noise from the set of the recorded data makes it much easier to identify 

real relationships between the dominant ICs and the dependent variable. Since properly 

estimated ICs are statistically independent from each other, they can be used to create a new 

set of explanatory variables in order to investigate brain signal relationships much more 

efficiently than it would be possible with the unprocessed data. 
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A.5. The AMUSE algorithm for ICA/BSS (Chapters 4, 6) 

Probably one of the simplest ICA and blind source separation procedures is the 

AMUSE algorithm (Tong et al., 1991). The AMUSE algorithm belongs to the group of 

second-order-statistics spatio-temporal decorrelation blind source separation algorithms. The 

AMUSE algorithm can be described as consisting of two consecutive PCA or SVD (singular 

value decomposition) blocks: First, PCA/SVD is applied to the input data; and second, SVD 

is applied to the time-delayed covariance matrix of the output of the previous stage. In the 

first step, a standard or robust pre-whitening (sphering) is applied as a linear transformation  

     &(!) = '/(!),                 (23) 

where ' = *
U

+
,

- is a pre-whitening matrix of the standard covariance matrix defined as 

     *U = .{/(!)/
0
(!)}@$$

0
/2

             (24)

where E means expectation operator and x(t) is a vector of observed data for time instant t.

Next, SVD is applied to a time-delayed covariance matrix of the pre-whitened data: 

    *3 = .{&(!)&
0
 (! − 1)} = 6S�0 ,  

(25)
 

where S is a diagonal matrix with decreasing singular values and U, V are matrices of 

eigenvectors. Then, the demixing (separating) matrix is estimated as 

     " = Y#
+5

= 6
0
'.               (26) 

The components extracted by the AMUSE are ordered according to decreasing 

singular values of the time-delayed covariance matrix. As in PCA and unlike many other ICA 

algorithms, all components estimated by AMUSE are uniquely defined (i.e., any run of 

algorithms on the same data will always produce the same components) and consistently 

ranked according to increasing complexity of components (decreasing linear predictaibility). 
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The high speed and inherent complexity ranking of the components gives the AMUSE 

algorithm an advantage which is so far unsurpassed for online BCI applications. 

A.6. The SOBI algorithm for ICA/BSS (Chapter 3) 

A natural extension of AMUSE is the Robust Second Order Blind Identification 

(SOBI) (Belouchrani et a., 1997) with Joint Approximate Diagonalization (JAD) (Cardoso 

and Souloumiac, 1996), which estimates the matrix U more robustly in respect to noise. In 

the SOBI algorithm the unitary matrix U performs approximate jointly diagonalization of 

many time delayed covariance matrices 

    *3
(9) = .{&(!)&

0
 (! − 9)}           (9 = 1,2, … , :) ,             (27) 

where typically P is 100 for noisy data. 

The source components obtained by SOBI were subjected to automatic ranking, based 

on Hoyer sparsity measures, in order to remove any subjectivity in the artifact component 

selection procedure. Algorithms like AMUSE and SOBI exploit only second order statistics 

(SOS) information by using time-delayed covariance matrices, and they cannot be considered 

to perform ICA. Nevertheless, BSS algorithms are generally better able to estimate the 

original source (component) signals even if they are not completely mutually statistically 

independent, which is often the case with multi-channel EEG data. 

A.7. The UNICA algorithm for ICA/BSS (Chapter 5) 

The advantages of the Unbiased Quasi-Newton Algorithm for ICA (UNICA) 

algorithm (Cruces et al., 2000) consist mainly in its reliable separation of ocular independent 

components by performing unbiased ICA in the presence of strongly correlated Gaussian 
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noise in the mixture. UNICA performs quasi-Newton iteration for the estimation of the 

mixing system with a minimum variance distortion response criterion which eliminates from 

the outputs the interfering components and all the noise that is outside the extracted signal 

subspace. UNICA was selected for offline pre-processing of the data after evaluation of more 

than 20 ICA algorithms (Cichocki et al., ICALAB Toolboxes) based on distinctive time-

frequency signatures showing: 1) minimal number of components containing undesirable 

eye-blinking artifacts;  2) lack of other signals in the artifact components. 
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